Matches in SemOpenAlex for { <https://semopenalex.org/work/W1934322450> ?p ?o ?g. }
- W1934322450 endingPage "829" @default.
- W1934322450 startingPage "814" @default.
- W1934322450 abstract "A Bayesian non-parametric approach for modeling the distribution of multiple returns is proposed. More specifically, an asymmetric dynamic conditional correlation (ADCC) model is considered to estimate the time-varying correlations of financial returns where the individual volatilities are driven by GJR-GARCH models. This composite model takes into consideration the asymmetries in individual assets’ volatilities, as well as in the correlations. The errors are modeled using a Dirichlet location–scale mixture of multivariate Normals allowing for a flexible return distribution in terms of skewness and kurtosis. This gives rise to a Bayesian non-parametric ADCC (BNP-ADCC) model, as opposed to a symmetric specification, called BNP-DCC. Then these two models are compared using a sample of Apple Inc. and NASDAQ Industrial index daily returns. The obtained results reveal that for this particular data set the BNP-ADCC outperforms the BNP-DCC model. Finally, an illustrative asset allocation exercise is presented." @default.
- W1934322450 created "2016-06-24" @default.
- W1934322450 creator A5001969504 @default.
- W1934322450 creator A5043654867 @default.
- W1934322450 creator A5076552173 @default.
- W1934322450 date "2016-08-01" @default.
- W1934322450 modified "2023-09-23" @default.
- W1934322450 title "A Bayesian non-parametric approach to asymmetric dynamic conditional correlation model with application to portfolio selection" @default.
- W1934322450 cites W1576326745 @default.
- W1934322450 cites W1586358094 @default.
- W1934322450 cites W1600080087 @default.
- W1934322450 cites W1727659491 @default.
- W1934322450 cites W1966908276 @default.
- W1934322450 cites W1976004821 @default.
- W1934322450 cites W1979264100 @default.
- W1934322450 cites W1979575715 @default.
- W1934322450 cites W1980417110 @default.
- W1934322450 cites W1999996900 @default.
- W1934322450 cites W2011090480 @default.
- W1934322450 cites W2011333818 @default.
- W1934322450 cites W2038199612 @default.
- W1934322450 cites W2051769598 @default.
- W1934322450 cites W2056006900 @default.
- W1934322450 cites W2059627964 @default.
- W1934322450 cites W2061160212 @default.
- W1934322450 cites W2063390378 @default.
- W1934322450 cites W2065392216 @default.
- W1934322450 cites W2072169887 @default.
- W1934322450 cites W2073879263 @default.
- W1934322450 cites W2078262781 @default.
- W1934322450 cites W2078866606 @default.
- W1934322450 cites W2079898209 @default.
- W1934322450 cites W2091797506 @default.
- W1934322450 cites W2094006360 @default.
- W1934322450 cites W2098027073 @default.
- W1934322450 cites W2101998432 @default.
- W1934322450 cites W2118942461 @default.
- W1934322450 cites W2140917889 @default.
- W1934322450 cites W2151136196 @default.
- W1934322450 cites W2172081471 @default.
- W1934322450 cites W3122347406 @default.
- W1934322450 cites W3123089914 @default.
- W1934322450 cites W3123128110 @default.
- W1934322450 cites W3124281530 @default.
- W1934322450 cites W3124620001 @default.
- W1934322450 cites W3125356465 @default.
- W1934322450 cites W3125564657 @default.
- W1934322450 cites W3125710411 @default.
- W1934322450 cites W4211177544 @default.
- W1934322450 doi "https://doi.org/10.1016/j.csda.2014.12.005" @default.
- W1934322450 hasPublicationYear "2016" @default.
- W1934322450 type Work @default.
- W1934322450 sameAs 1934322450 @default.
- W1934322450 citedByCount "16" @default.
- W1934322450 countsByYear W19343224502017 @default.
- W1934322450 countsByYear W19343224502018 @default.
- W1934322450 countsByYear W19343224502019 @default.
- W1934322450 countsByYear W19343224502020 @default.
- W1934322450 countsByYear W19343224502021 @default.
- W1934322450 crossrefType "journal-article" @default.
- W1934322450 hasAuthorship W1934322450A5001969504 @default.
- W1934322450 hasAuthorship W1934322450A5043654867 @default.
- W1934322450 hasAuthorship W1934322450A5076552173 @default.
- W1934322450 hasBestOaLocation W19343224502 @default.
- W1934322450 hasConcept C105795698 @default.
- W1934322450 hasConcept C107673813 @default.
- W1934322450 hasConcept C122342681 @default.
- W1934322450 hasConcept C149782125 @default.
- W1934322450 hasConcept C159877910 @default.
- W1934322450 hasConcept C166963901 @default.
- W1934322450 hasConcept C23922673 @default.
- W1934322450 hasConcept C33923547 @default.
- W1934322450 hasConcept C91602232 @default.
- W1934322450 hasConceptScore W1934322450C105795698 @default.
- W1934322450 hasConceptScore W1934322450C107673813 @default.
- W1934322450 hasConceptScore W1934322450C122342681 @default.
- W1934322450 hasConceptScore W1934322450C149782125 @default.
- W1934322450 hasConceptScore W1934322450C159877910 @default.
- W1934322450 hasConceptScore W1934322450C166963901 @default.
- W1934322450 hasConceptScore W1934322450C23922673 @default.
- W1934322450 hasConceptScore W1934322450C33923547 @default.
- W1934322450 hasConceptScore W1934322450C91602232 @default.
- W1934322450 hasFunder F4320319903 @default.
- W1934322450 hasLocation W19343224501 @default.
- W1934322450 hasLocation W19343224502 @default.
- W1934322450 hasLocation W19343224503 @default.
- W1934322450 hasLocation W19343224504 @default.
- W1934322450 hasLocation W19343224505 @default.
- W1934322450 hasOpenAccess W1934322450 @default.
- W1934322450 hasPrimaryLocation W19343224501 @default.
- W1934322450 hasRelatedWork W2047083991 @default.
- W1934322450 hasRelatedWork W2182184467 @default.
- W1934322450 hasRelatedWork W2791214462 @default.
- W1934322450 hasRelatedWork W3123589616 @default.
- W1934322450 hasRelatedWork W3138603722 @default.
- W1934322450 hasRelatedWork W4226451264 @default.
- W1934322450 hasRelatedWork W4312160687 @default.
- W1934322450 hasRelatedWork W2529078044 @default.