Matches in SemOpenAlex for { <https://semopenalex.org/work/W1934469433> ?p ?o ?g. }
- W1934469433 endingPage "2003" @default.
- W1934469433 startingPage "1937" @default.
- W1934469433 abstract "Abstract Submarine sediment density flows are one of the most important processes for moving sediment across our planet, yet they are extremely difficult to monitor directly. The speed of long run‐out submarine density flows has been measured directly in just five locations worldwide and their sediment concentration has never been measured directly. The only record of most density flows is their sediment deposit. This article summarizes the processes by which density flows deposit sediment and proposes a new single classification for the resulting types of deposit. Colloidal properties of fine cohesive mud ensure that mud deposition is complex, and large volumes of mud can sometimes pond or drain‐back for long distances into basinal lows. Deposition of ungraded mud (T E‐3 ) most probably finally results from en masse consolidation in relatively thin and dense flows, although initial size sorting of mud indicates earlier stages of dilute and expanded flow. Graded mud (T E‐2 ) and finely laminated mud (T E‐1 ) most probably result from floc settling at lower mud concentrations. Grain‐size breaks beneath mud intervals are commonplace, and record bypass of intermediate grain sizes due to colloidal mud behaviour. Planar‐laminated (T D ) and ripple cross‐laminated (T C ) non‐cohesive silt or fine sand is deposited by dilute flow, and the external deposit shape is consistent with previous models of spatial decelerating (dissipative) dilute flow. A grain‐size break beneath the ripple cross‐laminated (T C ) interval is common, and records a period of sediment reworking (sometimes into dunes) or bypass. Finely planar‐laminated sand can be deposited by low‐amplitude bed waves in dilute flow (T B‐1 ), but it is most likely to be deposited mainly by high‐concentration near‐bed layers beneath high‐density flows (T B‐2 ). More widely spaced planar lamination (T B‐3 ) occurs beneath massive clean sand (T A ), and is also formed by high‐density turbidity currents. High‐density turbidite deposits (T A , T B‐2 and T B‐3 ) have a tabular shape consistent with hindered settling, and are typically overlain by a more extensive drape of low‐density turbidite (T D and T C ,). This core and drape shape suggests that events sometimes comprise two distinct flow components. Massive clean sand is less commonly deposited en masse by liquefied debris flow (D CS ), in which case the clean sand is ungraded or has a patchy grain‐size texture. Clean‐sand debrites can extend for several tens of kilometres before pinching out abruptly. Up‐current transitions suggest that clean‐sand debris flows sometimes form via transformation from high‐density turbidity currents. Cohesive debris flows can deposit three types of ungraded muddy sand that may contain clasts. Thick cohesive debrites tend to occur in more proximal settings and extend from an initial slope failure. Thinner and highly mobile low‐strength cohesive debris flows produce extensive deposits restricted to distal areas. These low‐strength debris flows may contain clasts and travel long distances (D M‐2 ), or result from more local flow transformation due to turbulence damping by cohesive mud (D M‐1 ). Mapping of individual flow deposits (beds) emphasizes how a single event can contain several flow types, with transformations between flow types. Flow transformation may be from dilute to dense flow, as well as from dense to dilute flow. Flow state, deposit type and flow transformation are strongly dependent on the volume fraction of cohesive fine mud within a flow. Recent field observations show significant deviations from previous widely cited models, and many hypotheses linking flow type to deposit type are poorly tested. There is much still to learn about these remarkable flows." @default.
- W1934469433 created "2016-06-24" @default.
- W1934469433 creator A5006200830 @default.
- W1934469433 creator A5025387778 @default.
- W1934469433 creator A5075689425 @default.
- W1934469433 creator A5076692913 @default.
- W1934469433 date "2012-10-30" @default.
- W1934469433 modified "2023-10-14" @default.
- W1934469433 title "Subaqueous sediment density flows: Depositional processes and deposit types" @default.
- W1934469433 cites W1485996298 @default.
- W1934469433 cites W1488515849 @default.
- W1934469433 cites W1494092363 @default.
- W1934469433 cites W1495509038 @default.
- W1934469433 cites W1527721266 @default.
- W1934469433 cites W1570489493 @default.
- W1934469433 cites W1575737396 @default.
- W1934469433 cites W1593715118 @default.
- W1934469433 cites W1602490592 @default.
- W1934469433 cites W1626503910 @default.
- W1934469433 cites W1671061651 @default.
- W1934469433 cites W1881051965 @default.
- W1934469433 cites W1908834558 @default.
- W1934469433 cites W1940170596 @default.
- W1934469433 cites W1964663719 @default.
- W1934469433 cites W1966477083 @default.
- W1934469433 cites W1967318561 @default.
- W1934469433 cites W1968735462 @default.
- W1934469433 cites W1968964243 @default.
- W1934469433 cites W1970940931 @default.
- W1934469433 cites W1971319519 @default.
- W1934469433 cites W1972441576 @default.
- W1934469433 cites W1972812451 @default.
- W1934469433 cites W1974765047 @default.
- W1934469433 cites W1974792361 @default.
- W1934469433 cites W1977385910 @default.
- W1934469433 cites W1978753726 @default.
- W1934469433 cites W1980251092 @default.
- W1934469433 cites W1980643700 @default.
- W1934469433 cites W1981453422 @default.
- W1934469433 cites W1983549181 @default.
- W1934469433 cites W1986159477 @default.
- W1934469433 cites W1989039292 @default.
- W1934469433 cites W1989050618 @default.
- W1934469433 cites W1991078415 @default.
- W1934469433 cites W1991838382 @default.
- W1934469433 cites W1992273400 @default.
- W1934469433 cites W1993387986 @default.
- W1934469433 cites W1993572718 @default.
- W1934469433 cites W1995852546 @default.
- W1934469433 cites W1998907201 @default.
- W1934469433 cites W1999537656 @default.
- W1934469433 cites W2000709042 @default.
- W1934469433 cites W2001976245 @default.
- W1934469433 cites W2005273270 @default.
- W1934469433 cites W2005509878 @default.
- W1934469433 cites W2005566545 @default.
- W1934469433 cites W2007992350 @default.
- W1934469433 cites W2008841345 @default.
- W1934469433 cites W2011796652 @default.
- W1934469433 cites W2012234223 @default.
- W1934469433 cites W2012868976 @default.
- W1934469433 cites W2013832002 @default.
- W1934469433 cites W2016594529 @default.
- W1934469433 cites W2016976886 @default.
- W1934469433 cites W2018999844 @default.
- W1934469433 cites W2019660404 @default.
- W1934469433 cites W2020444359 @default.
- W1934469433 cites W2020686060 @default.
- W1934469433 cites W2021308874 @default.
- W1934469433 cites W2022388266 @default.
- W1934469433 cites W2024126365 @default.
- W1934469433 cites W2024610996 @default.
- W1934469433 cites W2025308240 @default.
- W1934469433 cites W2025955260 @default.
- W1934469433 cites W2026886308 @default.
- W1934469433 cites W2027349330 @default.
- W1934469433 cites W2027568591 @default.
- W1934469433 cites W2028119216 @default.
- W1934469433 cites W2028705424 @default.
- W1934469433 cites W2029821735 @default.
- W1934469433 cites W2032451031 @default.
- W1934469433 cites W2032652270 @default.
- W1934469433 cites W2032959027 @default.
- W1934469433 cites W2034073151 @default.
- W1934469433 cites W2034414859 @default.
- W1934469433 cites W2034615953 @default.
- W1934469433 cites W2034803743 @default.
- W1934469433 cites W2035855420 @default.
- W1934469433 cites W2040337214 @default.
- W1934469433 cites W2040874249 @default.
- W1934469433 cites W2044247406 @default.
- W1934469433 cites W2044567705 @default.
- W1934469433 cites W2045563478 @default.
- W1934469433 cites W2048182353 @default.
- W1934469433 cites W2049870640 @default.
- W1934469433 cites W2050109095 @default.
- W1934469433 cites W2050475880 @default.
- W1934469433 cites W2050532786 @default.