Matches in SemOpenAlex for { <https://semopenalex.org/work/W193547928> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W193547928 endingPage "1389" @default.
- W193547928 startingPage "1386" @default.
- W193547928 abstract "Multiple criteria optimization seeks to simultaneously optimize two or more objective functions under a set of constraints. It has a great variety of applications, ranging from financial management, energy planning, sustainable development, to aircraft design. Data mining is aim at extracting hidden and useful knowledge from large databases. Major contributors of data mining include machine learning, statistics, pattern recognition, algorithms, and database technology (Fayyad, Piatetsky-Shapiro, & Smyth, 1996). In recent years, the multiple criteria optimization research community has actively involved in the field of data mining (See, for example: Yu 1985; Bhattacharyya 2000; Francisci & Collard, 2003; Kou, Liu, Peng, Shi, Wise, & Xu, 2003; Freitas 2004; Shi, Peng, Kou, & Chen, 2005; Kou, Peng, Shi, Wise, & Xu, 2005; Kou, Peng, Shi, & Chen, 2006; Shi, Peng, Kou, & Chen, 2007). Many data mining tasks, such as classification, prediction, clustering, and model selection, can be formulated as multi-criteria optimization problems. Depending upon the nature of problems and the characteristics of datasets, different multi-criteria models can be built. Utilizing methodologies and approaches from mathematical programming, multiple criteria optimization is able to provide effective solutions to large-scale data mining problems. An additional advantage of multi-criteria programming is that it assumes no deterministic relationships between variables (Hand & Henley, 1997)." @default.
- W193547928 created "2016-06-24" @default.
- W193547928 creator A5019041750 @default.
- W193547928 creator A5039086738 @default.
- W193547928 creator A5073973267 @default.
- W193547928 date "2011-05-24" @default.
- W193547928 modified "2023-09-26" @default.
- W193547928 title "Multiple Criteria Optimization in Data Mining" @default.
- W193547928 cites W1991013599 @default.
- W193547928 cites W2010583686 @default.
- W193547928 cites W2083146005 @default.
- W193547928 cites W2088307184 @default.
- W193547928 cites W2121365620 @default.
- W193547928 cites W2122442339 @default.
- W193547928 cites W2140853997 @default.
- W193547928 cites W2168123127 @default.
- W193547928 cites W2495985821 @default.
- W193547928 doi "https://doi.org/10.4018/978-1-60566-010-3.ch214" @default.
- W193547928 hasPublicationYear "2011" @default.
- W193547928 type Work @default.
- W193547928 sameAs 193547928 @default.
- W193547928 citedByCount "1" @default.
- W193547928 countsByYear W1935479282014 @default.
- W193547928 crossrefType "book-chapter" @default.
- W193547928 hasAuthorship W193547928A5019041750 @default.
- W193547928 hasAuthorship W193547928A5039086738 @default.
- W193547928 hasAuthorship W193547928A5073973267 @default.
- W193547928 hasConcept C119857082 @default.
- W193547928 hasConcept C124101348 @default.
- W193547928 hasConcept C151730666 @default.
- W193547928 hasConcept C154945302 @default.
- W193547928 hasConcept C177264268 @default.
- W193547928 hasConcept C199360897 @default.
- W193547928 hasConcept C202444582 @default.
- W193547928 hasConcept C24145651 @default.
- W193547928 hasConcept C2776085556 @default.
- W193547928 hasConcept C33923547 @default.
- W193547928 hasConcept C41008148 @default.
- W193547928 hasConcept C73555534 @default.
- W193547928 hasConcept C81917197 @default.
- W193547928 hasConcept C86803240 @default.
- W193547928 hasConcept C9652623 @default.
- W193547928 hasConceptScore W193547928C119857082 @default.
- W193547928 hasConceptScore W193547928C124101348 @default.
- W193547928 hasConceptScore W193547928C151730666 @default.
- W193547928 hasConceptScore W193547928C154945302 @default.
- W193547928 hasConceptScore W193547928C177264268 @default.
- W193547928 hasConceptScore W193547928C199360897 @default.
- W193547928 hasConceptScore W193547928C202444582 @default.
- W193547928 hasConceptScore W193547928C24145651 @default.
- W193547928 hasConceptScore W193547928C2776085556 @default.
- W193547928 hasConceptScore W193547928C33923547 @default.
- W193547928 hasConceptScore W193547928C41008148 @default.
- W193547928 hasConceptScore W193547928C73555534 @default.
- W193547928 hasConceptScore W193547928C81917197 @default.
- W193547928 hasConceptScore W193547928C86803240 @default.
- W193547928 hasConceptScore W193547928C9652623 @default.
- W193547928 hasLocation W1935479281 @default.
- W193547928 hasOpenAccess W193547928 @default.
- W193547928 hasPrimaryLocation W1935479281 @default.
- W193547928 hasRelatedWork W1497771735 @default.
- W193547928 hasRelatedWork W1644635602 @default.
- W193547928 hasRelatedWork W1973352466 @default.
- W193547928 hasRelatedWork W2022115720 @default.
- W193547928 hasRelatedWork W2088307184 @default.
- W193547928 hasRelatedWork W2153531907 @default.
- W193547928 hasRelatedWork W2294185338 @default.
- W193547928 hasRelatedWork W2329354538 @default.
- W193547928 hasRelatedWork W2349143008 @default.
- W193547928 hasRelatedWork W2372756775 @default.
- W193547928 hasRelatedWork W2376001476 @default.
- W193547928 hasRelatedWork W2384269705 @default.
- W193547928 hasRelatedWork W2415375246 @default.
- W193547928 hasRelatedWork W2495985821 @default.
- W193547928 hasRelatedWork W2530312537 @default.
- W193547928 hasRelatedWork W3042096089 @default.
- W193547928 hasRelatedWork W3119617948 @default.
- W193547928 hasRelatedWork W428585213 @default.
- W193547928 hasRelatedWork W647092270 @default.
- W193547928 hasRelatedWork W946032387 @default.
- W193547928 isParatext "false" @default.
- W193547928 isRetracted "false" @default.
- W193547928 magId "193547928" @default.
- W193547928 workType "book-chapter" @default.