Matches in SemOpenAlex for { <https://semopenalex.org/work/W1936427794> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W1936427794 abstract "Used in nearly every organization, employment interviews are a ubiquitous process where job applicants are evaluated by an employer for an open position. Consisting of an interpersonal interaction between at least one interviewer and a job applicant, they are used to assess interviewee knowledge, skills, abilities, and behavior in order to select the most suitable person for the job at hand. Because they require face-to-face interaction between at least two protagonists, they are inherently social, and all that recruiters have as a basis to forge their opinion is the applicant's behavior during the interview (in addition to his resume); in such settings, first impressions are known to play an important role. First impressions can be defined as snap judgments of others made based on a low amount of information. Interestingly, social psychology research has shown that humans are quite accurate at making inferences about others, even if the information is minimal. Social psychologists long studied job interviews, with the aim of understanding the relationships between behavior, interview outcomes, and job performance. Until recently, psychology studies relied on the use of time-intensive manual annotations by human observers. However, the advent of inexpensive audio and video sensors in the last decade, in conjunction with improved perceptual processing methods, has enabled the automatic and accurate extraction of behavioral cues, facilitating the conduct of social psychology studies. The use of automatically extracted nonverbal cues in combination with machine learning inference techniques has led to promising computational methods for the automatic prediction of individual and group social variables such as personality, emergent leadership, or dominance. In this thesis, we addressed the problem of automatically predicting hirability impressions from interview recordings by investigating three main aspects. First, we explored the use of state-of-the-art computational methods for the automatic extraction of nonverbal cues. As a rationale for selecting the behavioral features to be extracted, we reviewed the psychology literature for nonverbal cues which were shown to play a role in job interviews. While the main focus of this thesis is nonverbal behavior, we also investigated the use of verbal content and standard questionnaire outputs. Also, we did not limit ourselves to the use of existing techniques: we developed a multimodal nodding detection method based on previous findings in psychology stating that head gestures are conditioned on the speaking status of the person under analysis, and results showed that considering the speaking status improved the accuracy. Second, we investigated the use of supervised machine learning techniques for the prediction of hirability impressions in a regression task, and up to 36% of the variance could be explained, demonstrating that the automatic inference of hirability is a promising task. Finally, we analyzed the predictive validity of thin slices, short segments of interaction, and showed that short excerpts of job interviews could be predictive of the outcome, with up to 34% of the variance explained by nonverbal behavior extracted from thin slices. As another trend, online social media is changing the landscape of personnel recruitment. Until now, resumes were among the most widely used tools for the screening of job applicants. [...]" @default.
- W1936427794 created "2016-06-24" @default.
- W1936427794 creator A5006266631 @default.
- W1936427794 date "2015-01-01" @default.
- W1936427794 modified "2023-09-23" @default.
- W1936427794 title "Computational Analysis Of Behavior In Employment Interviews And Video Resumes" @default.
- W1936427794 doi "https://doi.org/10.5075/epfl-thesis-6567" @default.
- W1936427794 hasPublicationYear "2015" @default.
- W1936427794 type Work @default.
- W1936427794 sameAs 1936427794 @default.
- W1936427794 citedByCount "2" @default.
- W1936427794 countsByYear W19364277942018 @default.
- W1936427794 countsByYear W19364277942019 @default.
- W1936427794 crossrefType "journal-article" @default.
- W1936427794 hasAuthorship W1936427794A5006266631 @default.
- W1936427794 hasConcept C10090317 @default.
- W1936427794 hasConcept C105795698 @default.
- W1936427794 hasConcept C129484327 @default.
- W1936427794 hasConcept C138496976 @default.
- W1936427794 hasConcept C154945302 @default.
- W1936427794 hasConcept C15744967 @default.
- W1936427794 hasConcept C169760540 @default.
- W1936427794 hasConcept C17744445 @default.
- W1936427794 hasConcept C180747234 @default.
- W1936427794 hasConcept C199539241 @default.
- W1936427794 hasConcept C24845683 @default.
- W1936427794 hasConcept C26760741 @default.
- W1936427794 hasConcept C2718322 @default.
- W1936427794 hasConcept C2776214188 @default.
- W1936427794 hasConcept C2776587543 @default.
- W1936427794 hasConcept C2777207495 @default.
- W1936427794 hasConcept C2778968331 @default.
- W1936427794 hasConcept C33923547 @default.
- W1936427794 hasConcept C41008148 @default.
- W1936427794 hasConcept C58346731 @default.
- W1936427794 hasConcept C75630572 @default.
- W1936427794 hasConcept C77805123 @default.
- W1936427794 hasConcept C86772948 @default.
- W1936427794 hasConceptScore W1936427794C10090317 @default.
- W1936427794 hasConceptScore W1936427794C105795698 @default.
- W1936427794 hasConceptScore W1936427794C129484327 @default.
- W1936427794 hasConceptScore W1936427794C138496976 @default.
- W1936427794 hasConceptScore W1936427794C154945302 @default.
- W1936427794 hasConceptScore W1936427794C15744967 @default.
- W1936427794 hasConceptScore W1936427794C169760540 @default.
- W1936427794 hasConceptScore W1936427794C17744445 @default.
- W1936427794 hasConceptScore W1936427794C180747234 @default.
- W1936427794 hasConceptScore W1936427794C199539241 @default.
- W1936427794 hasConceptScore W1936427794C24845683 @default.
- W1936427794 hasConceptScore W1936427794C26760741 @default.
- W1936427794 hasConceptScore W1936427794C2718322 @default.
- W1936427794 hasConceptScore W1936427794C2776214188 @default.
- W1936427794 hasConceptScore W1936427794C2776587543 @default.
- W1936427794 hasConceptScore W1936427794C2777207495 @default.
- W1936427794 hasConceptScore W1936427794C2778968331 @default.
- W1936427794 hasConceptScore W1936427794C33923547 @default.
- W1936427794 hasConceptScore W1936427794C41008148 @default.
- W1936427794 hasConceptScore W1936427794C58346731 @default.
- W1936427794 hasConceptScore W1936427794C75630572 @default.
- W1936427794 hasConceptScore W1936427794C77805123 @default.
- W1936427794 hasConceptScore W1936427794C86772948 @default.
- W1936427794 hasLocation W19364277941 @default.
- W1936427794 hasOpenAccess W1936427794 @default.
- W1936427794 hasPrimaryLocation W19364277941 @default.
- W1936427794 hasRelatedWork W1702097042 @default.
- W1936427794 hasRelatedWork W1970120219 @default.
- W1936427794 hasRelatedWork W1970909954 @default.
- W1936427794 hasRelatedWork W1971938125 @default.
- W1936427794 hasRelatedWork W2579576415 @default.
- W1936427794 hasRelatedWork W2756004689 @default.
- W1936427794 hasRelatedWork W2768094002 @default.
- W1936427794 hasRelatedWork W2769012417 @default.
- W1936427794 hasRelatedWork W2786510204 @default.
- W1936427794 hasRelatedWork W2787012466 @default.
- W1936427794 hasRelatedWork W2963802982 @default.
- W1936427794 hasRelatedWork W2964077576 @default.
- W1936427794 hasRelatedWork W2979968844 @default.
- W1936427794 hasRelatedWork W2980961576 @default.
- W1936427794 hasRelatedWork W2991440563 @default.
- W1936427794 hasRelatedWork W3147425147 @default.
- W1936427794 hasRelatedWork W3159564482 @default.
- W1936427794 hasRelatedWork W3193946479 @default.
- W1936427794 hasRelatedWork W3205032572 @default.
- W1936427794 hasRelatedWork W370733815 @default.
- W1936427794 isParatext "false" @default.
- W1936427794 isRetracted "false" @default.
- W1936427794 magId "1936427794" @default.
- W1936427794 workType "article" @default.