Matches in SemOpenAlex for { <https://semopenalex.org/work/W1936695790> ?p ?o ?g. }
- W1936695790 endingPage "277" @default.
- W1936695790 startingPage "271" @default.
- W1936695790 abstract "Increasingly often in epidemiologic research, associations between survival time and predictors of interest are measured by differences between distribution functions rather than hazard functions. For example, differences in percentiles of survival time, expressed in absolute time units (e.g., weeks), may complement the popular risk ratios, which are unitless measures. When analyzing time to an event of interest (e.g., death) in prospective cohort studies, the time scale can be set to start at birth or at study entry. The advantages of one time origin over the other have been thoroughly explored for the estimation of risks but not for the estimation of survival percentiles. In this paper, we analyze the use of different time scales in the estimation of survival percentiles with Laplace regression. Using this regression method, investigators can estimate percentiles of survival time over levels of an exposure of interest while adjusting for potential confounders. Our findings may help to improve modeling strategies and ease interpretation in the estimation of survival percentiles in prospective cohort studies." @default.
- W1936695790 created "2016-06-24" @default.
- W1936695790 creator A5030080904 @default.
- W1936695790 creator A5062707573 @default.
- W1936695790 creator A5069388270 @default.
- W1936695790 creator A5087152170 @default.
- W1936695790 creator A5090045684 @default.
- W1936695790 date "2015-06-20" @default.
- W1936695790 modified "2023-10-18" @default.
- W1936695790 title "Using Laplace Regression to Model and Predict Percentiles of Age at Death When Age Is the Primary Time Scale" @default.
- W1936695790 cites W151156239 @default.
- W1936695790 cites W1918854684 @default.
- W1936695790 cites W1950940723 @default.
- W1936695790 cites W1970289782 @default.
- W1936695790 cites W1973885323 @default.
- W1936695790 cites W1976240796 @default.
- W1936695790 cites W1982154330 @default.
- W1936695790 cites W1988292335 @default.
- W1936695790 cites W1995250882 @default.
- W1936695790 cites W1996813573 @default.
- W1936695790 cites W2019601809 @default.
- W1936695790 cites W2026795433 @default.
- W1936695790 cites W2032663512 @default.
- W1936695790 cites W2034791988 @default.
- W1936695790 cites W2046183081 @default.
- W1936695790 cites W2050478727 @default.
- W1936695790 cites W2055462318 @default.
- W1936695790 cites W2074954887 @default.
- W1936695790 cites W2083447308 @default.
- W1936695790 cites W2101041583 @default.
- W1936695790 cites W2105375900 @default.
- W1936695790 cites W2106933201 @default.
- W1936695790 cites W2107794166 @default.
- W1936695790 cites W2112910791 @default.
- W1936695790 cites W2114748980 @default.
- W1936695790 cites W2116312562 @default.
- W1936695790 cites W2121625711 @default.
- W1936695790 cites W2123330610 @default.
- W1936695790 cites W2126453842 @default.
- W1936695790 cites W2130909087 @default.
- W1936695790 cites W2132810818 @default.
- W1936695790 cites W2136264604 @default.
- W1936695790 cites W2147381093 @default.
- W1936695790 cites W2156456143 @default.
- W1936695790 cites W2157328407 @default.
- W1936695790 cites W2167489015 @default.
- W1936695790 cites W2169922337 @default.
- W1936695790 cites W2314719462 @default.
- W1936695790 cites W2316961134 @default.
- W1936695790 cites W2330623947 @default.
- W1936695790 cites W3041047318 @default.
- W1936695790 cites W4241653265 @default.
- W1936695790 doi "https://doi.org/10.1093/aje/kwv033" @default.
- W1936695790 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26093508" @default.
- W1936695790 hasPublicationYear "2015" @default.
- W1936695790 type Work @default.
- W1936695790 sameAs 1936695790 @default.
- W1936695790 citedByCount "30" @default.
- W1936695790 countsByYear W19366957902015 @default.
- W1936695790 countsByYear W19366957902016 @default.
- W1936695790 countsByYear W19366957902017 @default.
- W1936695790 countsByYear W19366957902018 @default.
- W1936695790 countsByYear W19366957902019 @default.
- W1936695790 countsByYear W19366957902020 @default.
- W1936695790 countsByYear W19366957902021 @default.
- W1936695790 countsByYear W19366957902022 @default.
- W1936695790 countsByYear W19366957902023 @default.
- W1936695790 crossrefType "journal-article" @default.
- W1936695790 hasAuthorship W1936695790A5030080904 @default.
- W1936695790 hasAuthorship W1936695790A5062707573 @default.
- W1936695790 hasAuthorship W1936695790A5069388270 @default.
- W1936695790 hasAuthorship W1936695790A5087152170 @default.
- W1936695790 hasAuthorship W1936695790A5090045684 @default.
- W1936695790 hasBestOaLocation W19366957901 @default.
- W1936695790 hasConcept C10515644 @default.
- W1936695790 hasConcept C105795698 @default.
- W1936695790 hasConcept C120068334 @default.
- W1936695790 hasConcept C122048520 @default.
- W1936695790 hasConcept C127413603 @default.
- W1936695790 hasConcept C144024400 @default.
- W1936695790 hasConcept C149923435 @default.
- W1936695790 hasConcept C152877465 @default.
- W1936695790 hasConcept C178790620 @default.
- W1936695790 hasConcept C185265303 @default.
- W1936695790 hasConcept C185592680 @default.
- W1936695790 hasConcept C201995342 @default.
- W1936695790 hasConcept C207103383 @default.
- W1936695790 hasConcept C33923547 @default.
- W1936695790 hasConcept C44249647 @default.
- W1936695790 hasConcept C49261128 @default.
- W1936695790 hasConcept C50382708 @default.
- W1936695790 hasConcept C71924100 @default.
- W1936695790 hasConcept C77350462 @default.
- W1936695790 hasConcept C83546350 @default.
- W1936695790 hasConcept C96250715 @default.
- W1936695790 hasConceptScore W1936695790C10515644 @default.
- W1936695790 hasConceptScore W1936695790C105795698 @default.
- W1936695790 hasConceptScore W1936695790C120068334 @default.