Matches in SemOpenAlex for { <https://semopenalex.org/work/W193882118> ?p ?o ?g. }
- W193882118 abstract "Chloroplast genome structure, gene order and content are highly conserved in land plants. We sequenced the complete chloroplast genome sequence of Trachelium caeruleum (Campanulaceae) a member of an angiosperm family known for highly rearranged chloroplast genomes. The total genome size is 162,321 bp with an IR of 27,273 bp, LSC of 100,113 bp and SSC of 7,661 bp. The genome encodes 115 unique genes, with 19 duplicated in the IR, a tRNA (trnI-CAU) duplicated once in the LSC and a protein coding gene (psbJ) duplicated twice, for a total of 137 genes. Four genes (ycf15, rpl23, infA and accD) are truncated and likely nonfunctional; three others (clpP, ycf1 and ycf2) are so highly diverged that they may now be pseudogenes. The most conspicuous feature of the Trachelium genome is the presence of eighteen internally unrearranged blocks of genes that have been inverted or relocated within the genome, relative to the typical gene order of most angiosperm chloroplast genomes. Recombination between repeats or tRNAs has been suggested as two means of chloroplast genome rearrangements. We compared the relative number of repeats in Trachelium to eight other angiosperm chloroplast genomes, and evaluated the location of repeats and tRNAs in relation to rearrangements. Trachelium has the highest number and largest repeats, which are concentrated near inversion endpoints or other rearrangements. tRNAs occur at many but not all inversion endpoints. There is likely no single mechanism responsible for the remarkable number of alterations in this genome, but both repeats and tRNAs are clearly associated with these rearrangements. Land plant chloroplast genomes are highly conserved in structure, gene order and content. The chloroplast genomes of ferns, the gymnosperm Ginkgo, and most angiosperms are nearly collinear, reflecting the gene order in lineages that diverged from lycopsids and the ancestral chloroplast gene order over 350 million years ago (Raubeson and Jansen, 1992). Although earlier mapping studies identified a number of taxa in which several rearrangements have occurred (reviewed in Raubeson and Jansen, 2005), an extraordinary number of chloroplast genome alterations are concentrated in several families in the angiosperm order Asterales (sensu APGII, Bremer et al., 2003). Gene mapping studies of representatives of the Campanulaceae (Cosner, 1993; Cosner et al.,1997, 2004) and Lobeliaceae (Knox et al., 1993; Knox and Palmer, 1999) identified large inversions, contraction and expansion of the inverted repeat regions, and several insertions and deletions in the cpDNAs of these closely related taxa. Detailed restriction site and gene mapping of the chloroplast genome of Trachelium caeruleum (Campanulaceae) identified seven to ten large inversions, families of repeats associated with rearrangements, possible transpositions, and even the disruption of operons (Cosner et al., 1997). Seventeen other members of the Campanulaceae were mapped and exhibit many additional rearrangements (Cosner et al., 2004). What happened in this lineage that made it susceptible to so many chloroplast genome rearrangements? How do normally very conserved chloroplast genomes change? The cause of rearrangements in this group is unclear based on the limited resolution available with mapping techniques. Several mechanisms have been proposed to explain how rearrangements occur: recombination between repeats, transposition, or temporary instability due to loss of the inverted repeat (Raubeson and Jansen, 2005). Sequencing whole chloroplast genomes within the Campanulaceae offers a unique opportunity to examine both the extent and mechanisms of rearrangements within a phylogenetic framework.We report here the first complete chloroplast genome sequence of a member of the Campanulaceae, Trachelium caeruleum. This work will serve as a benchmark for subsequent, comparative sequencing and analysis of other members of this family and close relatives, with the goal of further understanding chloroplast genome evolution. We confirmed features previously identified through mapping, and discovered many additional structural changes, including several partial to entire gene duplications, deterioration of at least four normally conserved chloroplast genes into gene fragments, and the nature and position of numerous repeat elements at or near inversion endpoints. The focus of this paper is on analyses of sequences at or near these rearrangements in Trachelium caeruleum. Inversions are believed to occur due to the presence of repeat elements subject to homologous recombination (Palmer, 1991; Knox et al., 1993). Repeats may facilitate inversions or other genome rearrangements (Achaz et al., 2003), and higher incidences of repeats have been correlated with greater numbers of rearrangements (Rocha, 2003). Alternatively, repeats may proliferate within a genome as a result of DNA strand repair mechanisms following a rearrangement event such as an inversion. Gene mapping studies previously identified five families of dispersed repeats in Trachelium at or near inversion endpoints (Cosner et al., 1997). Here we examine the sequences of these repeats and identify, map and characterize numerous additional repeats within the genome. We compare the number and size of repeats in typical unrearranged angiosperm chloroplast genomes to what we find in the highly rearranged chloroplast genome of Trachelium. The Trachelium chloroplast genome has the highest number and the largest repeats of diverse origin of any sequenced angiosperm chloroplast genome. These repeats are generally clustered at or near rearrangements and they are of diverse origins: partial or entire chloroplast gene duplications, noncoding chloroplast sequences or novel DNA with no clear sequence identity to any existing chloroplast DNA sequences. The Trachelium chloroplast genome represents the most highly rearranged sequenced genome of land plants and its bizarre organization is clearly associated with the high incidence of dispersed repetitive DNA." @default.
- W193882118 created "2016-06-24" @default.
- W193882118 creator A5001121649 @default.
- W193882118 creator A5039696693 @default.
- W193882118 creator A5054768116 @default.
- W193882118 creator A5082292991 @default.
- W193882118 date "2008-06-04" @default.
- W193882118 modified "2023-09-24" @default.
- W193882118 title "Complete chloroplast genome of Trachelium caeruleum: extensive rearrangements are associated with repeats and tRNAs" @default.
- W193882118 cites W1502417695 @default.
- W193882118 cites W1525248952 @default.
- W193882118 cites W1608335176 @default.
- W193882118 cites W1965467702 @default.
- W193882118 cites W1966276307 @default.
- W193882118 cites W1975922463 @default.
- W193882118 cites W1988662537 @default.
- W193882118 cites W1989537314 @default.
- W193882118 cites W1995816378 @default.
- W193882118 cites W1997803646 @default.
- W193882118 cites W1998436358 @default.
- W193882118 cites W2003674398 @default.
- W193882118 cites W2006745496 @default.
- W193882118 cites W2007345463 @default.
- W193882118 cites W2008016069 @default.
- W193882118 cites W2012047928 @default.
- W193882118 cites W2013930446 @default.
- W193882118 cites W2017793602 @default.
- W193882118 cites W2017821276 @default.
- W193882118 cites W2026209136 @default.
- W193882118 cites W2030118691 @default.
- W193882118 cites W2033667720 @default.
- W193882118 cites W2037628779 @default.
- W193882118 cites W2041246058 @default.
- W193882118 cites W2043207852 @default.
- W193882118 cites W2048009452 @default.
- W193882118 cites W2049028811 @default.
- W193882118 cites W2051373750 @default.
- W193882118 cites W2051452837 @default.
- W193882118 cites W2051464980 @default.
- W193882118 cites W2060369972 @default.
- W193882118 cites W2067001241 @default.
- W193882118 cites W2070036440 @default.
- W193882118 cites W2074265322 @default.
- W193882118 cites W2074453131 @default.
- W193882118 cites W2074742195 @default.
- W193882118 cites W2089219500 @default.
- W193882118 cites W2089443853 @default.
- W193882118 cites W2099067239 @default.
- W193882118 cites W2101348412 @default.
- W193882118 cites W2102478214 @default.
- W193882118 cites W2106896768 @default.
- W193882118 cites W2110188639 @default.
- W193882118 cites W2110449249 @default.
- W193882118 cites W2114671632 @default.
- W193882118 cites W2119923823 @default.
- W193882118 cites W2119978671 @default.
- W193882118 cites W2121016876 @default.
- W193882118 cites W2124281279 @default.
- W193882118 cites W2143249496 @default.
- W193882118 cites W2143420603 @default.
- W193882118 cites W2147096538 @default.
- W193882118 cites W2149213980 @default.
- W193882118 cites W2159656968 @default.
- W193882118 cites W2161662581 @default.
- W193882118 cites W2164075646 @default.
- W193882118 cites W2166152751 @default.
- W193882118 cites W2169418988 @default.
- W193882118 cites W2170771205 @default.
- W193882118 cites W2171689183 @default.
- W193882118 cites W2297841786 @default.
- W193882118 cites W2329530020 @default.
- W193882118 cites W2401311635 @default.
- W193882118 cites W253660728 @default.
- W193882118 cites W2886858080 @default.
- W193882118 cites W55419897 @default.
- W193882118 cites W87975619 @default.
- W193882118 cites W2175236224 @default.
- W193882118 hasPublicationYear "2008" @default.
- W193882118 type Work @default.
- W193882118 sameAs 193882118 @default.
- W193882118 citedByCount "0" @default.
- W193882118 crossrefType "journal-article" @default.
- W193882118 hasAuthorship W193882118A5001121649 @default.
- W193882118 hasAuthorship W193882118A5039696693 @default.
- W193882118 hasAuthorship W193882118A5054768116 @default.
- W193882118 hasAuthorship W193882118A5082292991 @default.
- W193882118 hasConcept C104317684 @default.
- W193882118 hasConcept C141231307 @default.
- W193882118 hasConcept C174600577 @default.
- W193882118 hasConcept C34957205 @default.
- W193882118 hasConcept C48050816 @default.
- W193882118 hasConcept C51603236 @default.
- W193882118 hasConcept C54355233 @default.
- W193882118 hasConcept C86803240 @default.
- W193882118 hasConceptScore W193882118C104317684 @default.
- W193882118 hasConceptScore W193882118C141231307 @default.
- W193882118 hasConceptScore W193882118C174600577 @default.
- W193882118 hasConceptScore W193882118C34957205 @default.
- W193882118 hasConceptScore W193882118C48050816 @default.
- W193882118 hasConceptScore W193882118C51603236 @default.