Matches in SemOpenAlex for { <https://semopenalex.org/work/W1946114473> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W1946114473 endingPage "347" @default.
- W1946114473 startingPage "331" @default.
- W1946114473 abstract "We classify those finite simple groups whose Brauer graph (or decomposition matrix) has a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-block with defect 0, completing an investigation of many authors. The only finite simple groups whose defect zero <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p minus> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p-</mml:annotation> </mml:semantics> </mml:math> </inline-formula>blocks remained unclassified were the alternating groups <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper A Subscript n> <mml:semantics> <mml:msub> <mml:mi>A</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>A_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Here we show that these all have a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-block with defect 0 for every prime <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p greater-than-or-equal-to 5> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>5</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>pgeq 5</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This follows from proving the same result for every symmetric group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, which in turn follows as a consequence of the <italic><inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=application/x-tex>t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-core partition conjecture</italic>, that every non-negative integer possesses at least one <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=application/x-tex>t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-core partition, for any <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than-or-equal-to 4> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>4</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>tgeq 4</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. For <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than-or-equal-to 17> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>≥<!-- ≥ --></mml:mo> <mml:mn>17</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>tgeq 17</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we reduce this problem to Lagrange’s Theorem that every non-negative integer can be written as the sum of four squares. The only case with <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than 17> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>></mml:mo> <mml:mn>17</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t>17</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, that was not covered in previous work, was the case <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t equals 13> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>=</mml:mo> <mml:mn>13</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t=13</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. This we prove with a very different argument, by interpreting the generating function for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t> <mml:semantics> <mml:mi>t</mml:mi> <mml:annotation encoding=application/x-tex>t</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-core partitions in terms of modular forms, and then controlling the size of the coefficients using Deligne’s Theorem (née the <italic>Weil Conjectures</italic>). We also consider congruences for the number of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-blocks of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, proving a conjecture of Garvan, that establishes certain multiplicative congruences when <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=5 less-than-or-equal-to p less-than-or-equal-to 23> <mml:semantics> <mml:mrow> <mml:mn>5</mml:mn> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mi>p</mml:mi> <mml:mo>≤<!-- ≤ --></mml:mo> <mml:mn>23</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>5leq p leq 23</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. By using a result of Serre concerning the divisibility of coefficients of modular forms, we show that for any given prime <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and positive integer <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the number of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p minus> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p-</mml:annotation> </mml:semantics> </mml:math> </inline-formula>blocks with defect 0 in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>S_n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a multiple of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=m> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=application/x-tex>m</mml:annotation> </mml:semantics> </mml:math> </inline-formula> for almost all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We also establish that any given prime <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> divides the number of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p minus> <mml:semantics> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>−<!-- − --></mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>p-</mml:annotation> </mml:semantics> </mml:math> </inline-formula>modularly irreducible representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:msub> <mml:mi>S</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:annotation encoding=application/x-tex>S_{n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, for almost all <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=application/x-tex>n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1946114473 created "2016-06-24" @default.
- W1946114473 creator A5019320081 @default.
- W1946114473 creator A5042566789 @default.
- W1946114473 date "1996-01-01" @default.
- W1946114473 modified "2023-09-28" @default.
- W1946114473 title "Defect zero blocks for finite simple groups" @default.
- W1946114473 cites W1575113209 @default.
- W1946114473 cites W1666201387 @default.
- W1946114473 cites W1884403692 @default.
- W1946114473 cites W1977803909 @default.
- W1946114473 cites W1981114579 @default.
- W1946114473 cites W1991591011 @default.
- W1946114473 cites W2027577098 @default.
- W1946114473 cites W2084580258 @default.
- W1946114473 cites W2503931018 @default.
- W1946114473 cites W4205749282 @default.
- W1946114473 cites W4210871175 @default.
- W1946114473 cites W4233138493 @default.
- W1946114473 cites W4247387009 @default.
- W1946114473 doi "https://doi.org/10.1090/s0002-9947-96-01481-x" @default.
- W1946114473 hasPublicationYear "1996" @default.
- W1946114473 type Work @default.
- W1946114473 sameAs 1946114473 @default.
- W1946114473 citedByCount "150" @default.
- W1946114473 countsByYear W19461144732012 @default.
- W1946114473 countsByYear W19461144732013 @default.
- W1946114473 countsByYear W19461144732014 @default.
- W1946114473 countsByYear W19461144732015 @default.
- W1946114473 countsByYear W19461144732016 @default.
- W1946114473 countsByYear W19461144732017 @default.
- W1946114473 countsByYear W19461144732018 @default.
- W1946114473 countsByYear W19461144732019 @default.
- W1946114473 countsByYear W19461144732020 @default.
- W1946114473 countsByYear W19461144732021 @default.
- W1946114473 countsByYear W19461144732022 @default.
- W1946114473 countsByYear W19461144732023 @default.
- W1946114473 crossrefType "journal-article" @default.
- W1946114473 hasAuthorship W1946114473A5019320081 @default.
- W1946114473 hasAuthorship W1946114473A5042566789 @default.
- W1946114473 hasBestOaLocation W19461144731 @default.
- W1946114473 hasConcept C11413529 @default.
- W1946114473 hasConcept C154945302 @default.
- W1946114473 hasConcept C2776321320 @default.
- W1946114473 hasConcept C33923547 @default.
- W1946114473 hasConcept C41008148 @default.
- W1946114473 hasConceptScore W1946114473C11413529 @default.
- W1946114473 hasConceptScore W1946114473C154945302 @default.
- W1946114473 hasConceptScore W1946114473C2776321320 @default.
- W1946114473 hasConceptScore W1946114473C33923547 @default.
- W1946114473 hasConceptScore W1946114473C41008148 @default.
- W1946114473 hasIssue "1" @default.
- W1946114473 hasLocation W19461144731 @default.
- W1946114473 hasOpenAccess W1946114473 @default.
- W1946114473 hasPrimaryLocation W19461144731 @default.
- W1946114473 hasRelatedWork W1529400504 @default.
- W1946114473 hasRelatedWork W1892467659 @default.
- W1946114473 hasRelatedWork W2143954309 @default.
- W1946114473 hasRelatedWork W2333703843 @default.
- W1946114473 hasRelatedWork W2334690443 @default.
- W1946114473 hasRelatedWork W2386767533 @default.
- W1946114473 hasRelatedWork W2394022102 @default.
- W1946114473 hasRelatedWork W2469937864 @default.
- W1946114473 hasRelatedWork W2808586768 @default.
- W1946114473 hasRelatedWork W2998403542 @default.
- W1946114473 hasVolume "348" @default.
- W1946114473 isParatext "false" @default.
- W1946114473 isRetracted "false" @default.
- W1946114473 magId "1946114473" @default.
- W1946114473 workType "article" @default.