Matches in SemOpenAlex for { <https://semopenalex.org/work/W1947913127> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1947913127 endingPage "24" @default.
- W1947913127 startingPage "13" @default.
- W1947913127 abstract "The mixture of Gaussian Processes (MGP) is a powerful and fast developed machine learning framework. In order to make its learning more efficient, certain sparsity constraints have been adopted to form the mixture of sparse Gaussian Processes (MSGP). However, the existing MGP and MSGP models are rather complicated and their learning algorithms involve various approximation schemes. In this paper, we refine the MSGP model and develop the hard-cut EM algorithm for MSGP from its original version for MGP. It is demonstrated by the experiments on both synthetic and real datasets that our refined MSGP model and the hard-cut EM algorithm are feasible and can outperform some typical regression algorithms on prediction. Moreover, with sparse technique, the parameter learning of our proposed MSGP model is much more efficient than that of the MGP model." @default.
- W1947913127 created "2016-06-24" @default.
- W1947913127 creator A5031337173 @default.
- W1947913127 creator A5067164993 @default.
- W1947913127 date "2015-01-01" @default.
- W1947913127 modified "2023-10-18" @default.
- W1947913127 title "The Hard-Cut EM Algorithm for Mixture of Sparse Gaussian Processes" @default.
- W1947913127 cites W132606982 @default.
- W1947913127 cites W1499730991 @default.
- W1947913127 cites W1595039761 @default.
- W1947913127 cites W1964357740 @default.
- W1947913127 cites W1974459198 @default.
- W1947913127 cites W1983957710 @default.
- W1947913127 cites W1987052429 @default.
- W1947913127 cites W2007236156 @default.
- W1947913127 cites W2043133372 @default.
- W1947913127 cites W2092271904 @default.
- W1947913127 cites W2108193616 @default.
- W1947913127 cites W2114355534 @default.
- W1947913127 cites W2115038749 @default.
- W1947913127 cites W2117063635 @default.
- W1947913127 cites W2129564505 @default.
- W1947913127 cites W2148468554 @default.
- W1947913127 cites W2152937653 @default.
- W1947913127 cites W2160299137 @default.
- W1947913127 cites W3098200686 @default.
- W1947913127 cites W97653666 @default.
- W1947913127 doi "https://doi.org/10.1007/978-3-319-22053-6_2" @default.
- W1947913127 hasPublicationYear "2015" @default.
- W1947913127 type Work @default.
- W1947913127 sameAs 1947913127 @default.
- W1947913127 citedByCount "5" @default.
- W1947913127 countsByYear W19479131272016 @default.
- W1947913127 countsByYear W19479131272018 @default.
- W1947913127 countsByYear W19479131272019 @default.
- W1947913127 countsByYear W19479131272021 @default.
- W1947913127 crossrefType "book-chapter" @default.
- W1947913127 hasAuthorship W1947913127A5031337173 @default.
- W1947913127 hasAuthorship W1947913127A5067164993 @default.
- W1947913127 hasConcept C11413529 @default.
- W1947913127 hasConcept C121332964 @default.
- W1947913127 hasConcept C163716315 @default.
- W1947913127 hasConcept C41008148 @default.
- W1947913127 hasConcept C62520636 @default.
- W1947913127 hasConceptScore W1947913127C11413529 @default.
- W1947913127 hasConceptScore W1947913127C121332964 @default.
- W1947913127 hasConceptScore W1947913127C163716315 @default.
- W1947913127 hasConceptScore W1947913127C41008148 @default.
- W1947913127 hasConceptScore W1947913127C62520636 @default.
- W1947913127 hasLocation W19479131271 @default.
- W1947913127 hasOpenAccess W1947913127 @default.
- W1947913127 hasPrimaryLocation W19479131271 @default.
- W1947913127 hasRelatedWork W2104155200 @default.
- W1947913127 hasRelatedWork W2333698505 @default.
- W1947913127 hasRelatedWork W2351491280 @default.
- W1947913127 hasRelatedWork W2364307965 @default.
- W1947913127 hasRelatedWork W2371447506 @default.
- W1947913127 hasRelatedWork W2386767533 @default.
- W1947913127 hasRelatedWork W2389812080 @default.
- W1947913127 hasRelatedWork W303980170 @default.
- W1947913127 hasRelatedWork W4223479823 @default.
- W1947913127 hasRelatedWork W2183739785 @default.
- W1947913127 isParatext "false" @default.
- W1947913127 isRetracted "false" @default.
- W1947913127 magId "1947913127" @default.
- W1947913127 workType "book-chapter" @default.