Matches in SemOpenAlex for { <https://semopenalex.org/work/W194795841> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W194795841 abstract "The field of computer game artificial intelligence (AI) has gained considerable attention over the last few years as its advantages to research become well known. Computer games provide complex, rich environments that act as ready-made simulation test-beds and a general feature set that is familiar to game players. In particular, the first person shooter (FPS) genre has grown to be a popular test-bed for exploring AI techniques and creating more realistic synthetic characters. Although there have been vast improvements in commercial game AI over the last few years, it is arguably the single feature that needs the most improvement. Improving game AI is important to provide interesting and challenging opponents for game players. One approach to potentially improve game AI is the use of reinforcement learning (RL) algorithms. Although previous research has highlighted the potential of RL algorithms to produce unique and realistic game agents, the application of such techniques to control the high-level action selection of FPS game agents has not been investigated.In addition to limited amounts of investigation, RL techniques are interesting to investigate in the FPS domain as they are flexible enough to be combined with interactive training. It is proposed that a combination of RL and interactive training would yield a more complete approach to game agent design. Interactive training is the process of human users teaching synthetic agents how to behave in their environment. Interactive training has been successfully implemented along with RL in simulations of virtual dogs and humans. Although FPS game agents tend to display more complex behaviours than those seen in the interactive training research, it is arguable that training the game agents interactively has the potential to improve the quality of behaviour in game agents. The outcome of this thesis is the technique used to implement the interactive training tool, which has the potential for code reduction, simplified parameter tuning and controlled learning.The aim of this thesis is to investigate how interactive training can be used to develop FPS game agents. To begin this investigation, it first must be understood how RL can be applied to the complex and continuous space of FPS games. For this investigation, three techniques are implemented and compared in a purpose-built generic FPS environment. The first algorithm is hard-coded and is based on popular techniques used in commercial FPS games. The second algorithm is based on the RL technique Sarsa(l). The third algorithm is a modified Sarsa(l) algorithm, which incorporates interactive training. The techniques are implemented and compared based on quantitative and qualitative data to determine the skill level and quality of resultant behaviours respectively. Following this experimentation, a group of commercial FPS game designers will test the interactive training tool to investigate its suitability to the commercial market." @default.
- W194795841 created "2016-06-24" @default.
- W194795841 creator A5072953711 @default.
- W194795841 date "2012-01-01" @default.
- W194795841 modified "2023-09-27" @default.
- W194795841 title "Training bots to play: Investigating interactive reinforcement learning for bot behaviours in shooter games" @default.
- W194795841 hasPublicationYear "2012" @default.
- W194795841 type Work @default.
- W194795841 sameAs 194795841 @default.
- W194795841 citedByCount "0" @default.
- W194795841 crossrefType "journal-article" @default.
- W194795841 hasAuthorship W194795841A5072953711 @default.
- W194795841 hasConcept C107457646 @default.
- W194795841 hasConcept C111919701 @default.
- W194795841 hasConcept C121332964 @default.
- W194795841 hasConcept C134306372 @default.
- W194795841 hasConcept C154945302 @default.
- W194795841 hasConcept C170828538 @default.
- W194795841 hasConcept C177264268 @default.
- W194795841 hasConcept C199360897 @default.
- W194795841 hasConcept C202444582 @default.
- W194795841 hasConcept C2780791683 @default.
- W194795841 hasConcept C3018412434 @default.
- W194795841 hasConcept C3020701032 @default.
- W194795841 hasConcept C33923547 @default.
- W194795841 hasConcept C36503486 @default.
- W194795841 hasConcept C41008148 @default.
- W194795841 hasConcept C49774154 @default.
- W194795841 hasConcept C62520636 @default.
- W194795841 hasConcept C9652623 @default.
- W194795841 hasConcept C97541855 @default.
- W194795841 hasConcept C98045186 @default.
- W194795841 hasConceptScore W194795841C107457646 @default.
- W194795841 hasConceptScore W194795841C111919701 @default.
- W194795841 hasConceptScore W194795841C121332964 @default.
- W194795841 hasConceptScore W194795841C134306372 @default.
- W194795841 hasConceptScore W194795841C154945302 @default.
- W194795841 hasConceptScore W194795841C170828538 @default.
- W194795841 hasConceptScore W194795841C177264268 @default.
- W194795841 hasConceptScore W194795841C199360897 @default.
- W194795841 hasConceptScore W194795841C202444582 @default.
- W194795841 hasConceptScore W194795841C2780791683 @default.
- W194795841 hasConceptScore W194795841C3018412434 @default.
- W194795841 hasConceptScore W194795841C3020701032 @default.
- W194795841 hasConceptScore W194795841C33923547 @default.
- W194795841 hasConceptScore W194795841C36503486 @default.
- W194795841 hasConceptScore W194795841C41008148 @default.
- W194795841 hasConceptScore W194795841C49774154 @default.
- W194795841 hasConceptScore W194795841C62520636 @default.
- W194795841 hasConceptScore W194795841C9652623 @default.
- W194795841 hasConceptScore W194795841C97541855 @default.
- W194795841 hasConceptScore W194795841C98045186 @default.
- W194795841 hasLocation W1947958411 @default.
- W194795841 hasOpenAccess W194795841 @default.
- W194795841 hasPrimaryLocation W1947958411 @default.
- W194795841 hasRelatedWork W1488211198 @default.
- W194795841 hasRelatedWork W1507321583 @default.
- W194795841 hasRelatedWork W1517412219 @default.
- W194795841 hasRelatedWork W1933074467 @default.
- W194795841 hasRelatedWork W1966998092 @default.
- W194795841 hasRelatedWork W2003386389 @default.
- W194795841 hasRelatedWork W2065091168 @default.
- W194795841 hasRelatedWork W2070380114 @default.
- W194795841 hasRelatedWork W2135863126 @default.
- W194795841 hasRelatedWork W2296023730 @default.
- W194795841 hasRelatedWork W2389416824 @default.
- W194795841 hasRelatedWork W2543669033 @default.
- W194795841 hasRelatedWork W2598619793 @default.
- W194795841 hasRelatedWork W2962747693 @default.
- W194795841 hasRelatedWork W3006745895 @default.
- W194795841 hasRelatedWork W3011652444 @default.
- W194795841 hasRelatedWork W3046584790 @default.
- W194795841 hasRelatedWork W3116411895 @default.
- W194795841 hasRelatedWork W3208780444 @default.
- W194795841 hasRelatedWork W3208786560 @default.
- W194795841 isParatext "false" @default.
- W194795841 isRetracted "false" @default.
- W194795841 magId "194795841" @default.
- W194795841 workType "article" @default.