Matches in SemOpenAlex for { <https://semopenalex.org/work/W1948735417> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W1948735417 endingPage "S196" @default.
- W1948735417 startingPage "S190" @default.
- W1948735417 abstract "The aim of this study is to develop an on-scene injury severity prediction (OSISP) algorithm for truck occupants using only accident characteristics that are feasible to assess at the scene of the accident. The purpose of developing this algorithm is to use it as a basis for a field triage tool used in traffic accidents involving trucks. In addition, the model can be valuable for recognizing important factors for improving triage protocols used in Sweden and possibly in other countries with similar traffic environments and prehospital procedures.The scope is adult truck occupants involved in traffic accidents on Swedish public roads registered in the Swedish Traffic Accident Data Acquisition (STRADA) database for calendar years 2003 to 2013. STRADA contains information reported by the police and medical data on injured road users treated at emergency hospitals. Using data from STRADA, 2 OSISP multivariate logistic regression models for deriving the probability of severe injury (defined here as having an Injury Severity Score [ISS] > 15) were implemented for light and heavy trucks; that is, trucks with weight up to 3,500 kg and ⩾ 16,500 kg, respectively. A 10-fold cross-validation procedure was used to estimate the performance of the OSISP algorithm in terms of the area under the receiver operating characteristic curve (AUC).The rate of belt use was low, especially for heavy truck occupants. The OSISP models developed for light and heavy trucks achieved cross-validation AUC of 0.81 and 0.74, respectively. The AUC values obtained when the models were evaluated on all data without cross-validation were 0.87 for both light and heavy trucks. The difference in the AUC values with and without use of cross-validation indicates overfitting of the model, which may be a consequence of relatively small data sets. Belt use stands out as the most valuable predictor in both types of trucks; accident type and age are important predictors for light trucks.The OSISP models achieve good discriminating capability for light truck occupants and a reasonable performance for heavy truck occupants. The prediction accuracy may be increased by acquiring more data. Belt use was the strongest predictor of severe injury for both light and heavy truck occupants. There is a need for behavior-based safety programs and/or other means to encourage truck occupants to always wear a seat belt." @default.
- W1948735417 created "2016-06-24" @default.
- W1948735417 creator A5023800833 @default.
- W1948735417 creator A5038602979 @default.
- W1948735417 creator A5040102637 @default.
- W1948735417 creator A5042494738 @default.
- W1948735417 creator A5049645590 @default.
- W1948735417 creator A5065034950 @default.
- W1948735417 date "2015-10-05" @default.
- W1948735417 modified "2023-10-17" @default.
- W1948735417 title "On-Scene Injury Severity Prediction (OSISP) Algorithm for Truck Occupants" @default.
- W1948735417 cites W1990942988 @default.
- W1948735417 cites W1996493604 @default.
- W1948735417 cites W2047081548 @default.
- W1948735417 cites W2063763346 @default.
- W1948735417 cites W2070309393 @default.
- W1948735417 cites W2083066201 @default.
- W1948735417 cites W2100050046 @default.
- W1948735417 cites W2155664461 @default.
- W1948735417 cites W2483268670 @default.
- W1948735417 cites W3175417087 @default.
- W1948735417 cites W382084900 @default.
- W1948735417 doi "https://doi.org/10.1080/15389588.2015.1057578" @default.
- W1948735417 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26436231" @default.
- W1948735417 hasPublicationYear "2015" @default.
- W1948735417 type Work @default.
- W1948735417 sameAs 1948735417 @default.
- W1948735417 citedByCount "9" @default.
- W1948735417 countsByYear W19487354172015 @default.
- W1948735417 countsByYear W19487354172016 @default.
- W1948735417 countsByYear W19487354172017 @default.
- W1948735417 countsByYear W19487354172018 @default.
- W1948735417 countsByYear W19487354172019 @default.
- W1948735417 countsByYear W19487354172020 @default.
- W1948735417 countsByYear W19487354172021 @default.
- W1948735417 crossrefType "journal-article" @default.
- W1948735417 hasAuthorship W1948735417A5023800833 @default.
- W1948735417 hasAuthorship W1948735417A5038602979 @default.
- W1948735417 hasAuthorship W1948735417A5040102637 @default.
- W1948735417 hasAuthorship W1948735417A5042494738 @default.
- W1948735417 hasAuthorship W1948735417A5049645590 @default.
- W1948735417 hasAuthorship W1948735417A5065034950 @default.
- W1948735417 hasBestOaLocation W19487354172 @default.
- W1948735417 hasConcept C11413529 @default.
- W1948735417 hasConcept C119857082 @default.
- W1948735417 hasConcept C127413603 @default.
- W1948735417 hasConcept C151956035 @default.
- W1948735417 hasConcept C171146098 @default.
- W1948735417 hasConcept C22212356 @default.
- W1948735417 hasConcept C2777120189 @default.
- W1948735417 hasConcept C41008148 @default.
- W1948735417 hasConcept C52121051 @default.
- W1948735417 hasConcept C545542383 @default.
- W1948735417 hasConcept C58471807 @default.
- W1948735417 hasConcept C71924100 @default.
- W1948735417 hasConceptScore W1948735417C11413529 @default.
- W1948735417 hasConceptScore W1948735417C119857082 @default.
- W1948735417 hasConceptScore W1948735417C127413603 @default.
- W1948735417 hasConceptScore W1948735417C151956035 @default.
- W1948735417 hasConceptScore W1948735417C171146098 @default.
- W1948735417 hasConceptScore W1948735417C22212356 @default.
- W1948735417 hasConceptScore W1948735417C2777120189 @default.
- W1948735417 hasConceptScore W1948735417C41008148 @default.
- W1948735417 hasConceptScore W1948735417C52121051 @default.
- W1948735417 hasConceptScore W1948735417C545542383 @default.
- W1948735417 hasConceptScore W1948735417C58471807 @default.
- W1948735417 hasConceptScore W1948735417C71924100 @default.
- W1948735417 hasIssue "sup2" @default.
- W1948735417 hasLocation W19487354171 @default.
- W1948735417 hasLocation W19487354172 @default.
- W1948735417 hasLocation W19487354173 @default.
- W1948735417 hasOpenAccess W1948735417 @default.
- W1948735417 hasPrimaryLocation W19487354171 @default.
- W1948735417 hasRelatedWork W1562328176 @default.
- W1948735417 hasRelatedWork W1601324096 @default.
- W1948735417 hasRelatedWork W2001619854 @default.
- W1948735417 hasRelatedWork W2003266098 @default.
- W1948735417 hasRelatedWork W2012897436 @default.
- W1948735417 hasRelatedWork W2029611659 @default.
- W1948735417 hasRelatedWork W2047111624 @default.
- W1948735417 hasRelatedWork W2063763346 @default.
- W1948735417 hasRelatedWork W2076978163 @default.
- W1948735417 hasRelatedWork W2082340883 @default.
- W1948735417 hasRelatedWork W2136625176 @default.
- W1948735417 hasRelatedWork W2160570298 @default.
- W1948735417 hasRelatedWork W2268298429 @default.
- W1948735417 hasRelatedWork W2594918460 @default.
- W1948735417 hasRelatedWork W2606330674 @default.
- W1948735417 hasRelatedWork W3016646498 @default.
- W1948735417 hasRelatedWork W3040700263 @default.
- W1948735417 hasRelatedWork W3101353331 @default.
- W1948735417 hasRelatedWork W3115522444 @default.
- W1948735417 hasRelatedWork W382084900 @default.
- W1948735417 hasVolume "16" @default.
- W1948735417 isParatext "false" @default.
- W1948735417 isRetracted "false" @default.
- W1948735417 magId "1948735417" @default.
- W1948735417 workType "article" @default.