Matches in SemOpenAlex for { <https://semopenalex.org/work/W1948967906> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W1948967906 endingPage "290" @default.
- W1948967906 startingPage "273" @default.
- W1948967906 abstract "The normalization constant in the distribution of a discrete random variable may not be available in closed form; in such cases, the calculation of the likelihood can be computationally expensive. Approximations of the likelihood or approximate Bayesian computation methods can be used; but the resulting Markov chain Monte Carlo (MCMC) algorithm may not sample from the target of interest. In certain situations, one can efficiently compute lower and upper bounds on the likelihood. As a result, the target density and the acceptance probability of the Metropolis–Hastings algorithm can be bounded. We propose an efficient and exact MCMC algorithm based on the idea of retrospective sampling. This procedure can be applied to a number of discrete distributions, one of which is the Conway–Maxwell–Poisson distribution. In practice, the bounds on the acceptance probability do not need to be particularly tight in order to accept or reject a move. We demonstrate this method using data on the emergency hospital admissions in Scotland in 2010, where the main interest lies in the estimation of the variability of admissions, as it is considered as a proxy for health inequalities. Copyright © 2014 John Wiley & Sons, Ltd." @default.
- W1948967906 created "2016-06-24" @default.
- W1948967906 creator A5006230489 @default.
- W1948967906 creator A5018032267 @default.
- W1948967906 creator A5029743620 @default.
- W1948967906 creator A5058638781 @default.
- W1948967906 date "2014-03-01" @default.
- W1948967906 modified "2023-09-24" @default.
- W1948967906 title "Retrospective sampling in MCMC with an application to COM-Poisson regression" @default.
- W1948967906 cites W1639814325 @default.
- W1948967906 cites W1785118084 @default.
- W1948967906 cites W2004014822 @default.
- W1948967906 cites W2026261408 @default.
- W1948967906 cites W2032877371 @default.
- W1948967906 cites W2048001927 @default.
- W1948967906 cites W2101998432 @default.
- W1948967906 cites W2126750122 @default.
- W1948967906 cites W2148534890 @default.
- W1948967906 cites W2149161954 @default.
- W1948967906 cites W2159325249 @default.
- W1948967906 cites W2164356516 @default.
- W1948967906 cites W3105081376 @default.
- W1948967906 doi "https://doi.org/10.1002/sta4.61" @default.
- W1948967906 hasPublicationYear "2014" @default.
- W1948967906 type Work @default.
- W1948967906 sameAs 1948967906 @default.
- W1948967906 citedByCount "2" @default.
- W1948967906 countsByYear W19489679062017 @default.
- W1948967906 countsByYear W19489679062020 @default.
- W1948967906 crossrefType "journal-article" @default.
- W1948967906 hasAuthorship W1948967906A5006230489 @default.
- W1948967906 hasAuthorship W1948967906A5018032267 @default.
- W1948967906 hasAuthorship W1948967906A5029743620 @default.
- W1948967906 hasAuthorship W1948967906A5058638781 @default.
- W1948967906 hasBestOaLocation W19489679062 @default.
- W1948967906 hasConcept C100906024 @default.
- W1948967906 hasConcept C105795698 @default.
- W1948967906 hasConcept C107673813 @default.
- W1948967906 hasConcept C111350023 @default.
- W1948967906 hasConcept C11413529 @default.
- W1948967906 hasConcept C122123141 @default.
- W1948967906 hasConcept C28826006 @default.
- W1948967906 hasConcept C33923547 @default.
- W1948967906 hasConcept C41008148 @default.
- W1948967906 hasConceptScore W1948967906C100906024 @default.
- W1948967906 hasConceptScore W1948967906C105795698 @default.
- W1948967906 hasConceptScore W1948967906C107673813 @default.
- W1948967906 hasConceptScore W1948967906C111350023 @default.
- W1948967906 hasConceptScore W1948967906C11413529 @default.
- W1948967906 hasConceptScore W1948967906C122123141 @default.
- W1948967906 hasConceptScore W1948967906C28826006 @default.
- W1948967906 hasConceptScore W1948967906C33923547 @default.
- W1948967906 hasConceptScore W1948967906C41008148 @default.
- W1948967906 hasIssue "1" @default.
- W1948967906 hasLocation W19489679061 @default.
- W1948967906 hasLocation W19489679062 @default.
- W1948967906 hasLocation W19489679063 @default.
- W1948967906 hasOpenAccess W1948967906 @default.
- W1948967906 hasPrimaryLocation W19489679061 @default.
- W1948967906 hasRelatedWork W1500184395 @default.
- W1948967906 hasRelatedWork W2022313577 @default.
- W1948967906 hasRelatedWork W2067336207 @default.
- W1948967906 hasRelatedWork W2116268114 @default.
- W1948967906 hasRelatedWork W2119158312 @default.
- W1948967906 hasRelatedWork W2153558434 @default.
- W1948967906 hasRelatedWork W2158495165 @default.
- W1948967906 hasRelatedWork W2552050053 @default.
- W1948967906 hasRelatedWork W2915710275 @default.
- W1948967906 hasRelatedWork W3172494505 @default.
- W1948967906 hasVolume "3" @default.
- W1948967906 isParatext "false" @default.
- W1948967906 isRetracted "false" @default.
- W1948967906 magId "1948967906" @default.
- W1948967906 workType "article" @default.