Matches in SemOpenAlex for { <https://semopenalex.org/work/W1949096787> ?p ?o ?g. }
- W1949096787 endingPage "104" @default.
- W1949096787 startingPage "95" @default.
- W1949096787 abstract "Abstract Learning regressors from low‐resolution patches to high‐resolution patches has shown promising results for image super‐resolution. We observe that some regressors are better at dealing with certain cases, and others with different cases. In this paper, we jointly learn a collection of regressors, which collectively yield the smallest super‐resolving error for all training data. After training, each training sample is associated with a label to indicate its ‘best’ regressor, the one yielding the smallest error. During testing, our method bases on the concept of ‘adaptive selection’ to select the most appropriate regressor for each input patch. We assume that similar patches can be super‐resolved by the same regressor and use a fast, approximate kNN approach to transfer the labels of training patches to test patches. The method is conceptually simple and computationally efficient, yet very effective. Experiments on four datasets show that our method outperforms competing methods." @default.
- W1949096787 created "2016-06-24" @default.
- W1949096787 creator A5001254143 @default.
- W1949096787 creator A5052236177 @default.
- W1949096787 creator A5078838951 @default.
- W1949096787 date "2015-05-01" @default.
- W1949096787 modified "2023-10-18" @default.
- W1949096787 title "Jointly Optimized Regressors for Image Super-resolution" @default.
- W1949096787 cites W1552869711 @default.
- W1949096787 cites W1791560514 @default.
- W1949096787 cites W1976416062 @default.
- W1949096787 cites W1981199328 @default.
- W1949096787 cites W2034363465 @default.
- W1949096787 cites W2035308043 @default.
- W1949096787 cites W2035677848 @default.
- W1949096787 cites W2042801185 @default.
- W1949096787 cites W2060716992 @default.
- W1949096787 cites W2097074225 @default.
- W1949096787 cites W2098506229 @default.
- W1949096787 cites W2102443333 @default.
- W1949096787 cites W2121058967 @default.
- W1949096787 cites W2131349449 @default.
- W1949096787 cites W2146782367 @default.
- W1949096787 cites W2149669120 @default.
- W1949096787 cites W2150081556 @default.
- W1949096787 cites W2157394577 @default.
- W1949096787 cites W2167191464 @default.
- W1949096787 cites W2172128189 @default.
- W1949096787 cites W2534320940 @default.
- W1949096787 cites W3137074406 @default.
- W1949096787 doi "https://doi.org/10.1111/cgf.12544" @default.
- W1949096787 hasPublicationYear "2015" @default.
- W1949096787 type Work @default.
- W1949096787 sameAs 1949096787 @default.
- W1949096787 citedByCount "128" @default.
- W1949096787 countsByYear W19490967872015 @default.
- W1949096787 countsByYear W19490967872016 @default.
- W1949096787 countsByYear W19490967872017 @default.
- W1949096787 countsByYear W19490967872018 @default.
- W1949096787 countsByYear W19490967872019 @default.
- W1949096787 countsByYear W19490967872020 @default.
- W1949096787 countsByYear W19490967872021 @default.
- W1949096787 countsByYear W19490967872022 @default.
- W1949096787 countsByYear W19490967872023 @default.
- W1949096787 crossrefType "journal-article" @default.
- W1949096787 hasAuthorship W1949096787A5001254143 @default.
- W1949096787 hasAuthorship W1949096787A5052236177 @default.
- W1949096787 hasAuthorship W1949096787A5078838951 @default.
- W1949096787 hasConcept C111472728 @default.
- W1949096787 hasConcept C11413529 @default.
- W1949096787 hasConcept C115961682 @default.
- W1949096787 hasConcept C119857082 @default.
- W1949096787 hasConcept C124101348 @default.
- W1949096787 hasConcept C138268822 @default.
- W1949096787 hasConcept C138885662 @default.
- W1949096787 hasConcept C150899416 @default.
- W1949096787 hasConcept C153180895 @default.
- W1949096787 hasConcept C154945302 @default.
- W1949096787 hasConcept C185592680 @default.
- W1949096787 hasConcept C198531522 @default.
- W1949096787 hasConcept C2780586882 @default.
- W1949096787 hasConcept C41008148 @default.
- W1949096787 hasConcept C43617362 @default.
- W1949096787 hasConcept C51632099 @default.
- W1949096787 hasConcept C81917197 @default.
- W1949096787 hasConceptScore W1949096787C111472728 @default.
- W1949096787 hasConceptScore W1949096787C11413529 @default.
- W1949096787 hasConceptScore W1949096787C115961682 @default.
- W1949096787 hasConceptScore W1949096787C119857082 @default.
- W1949096787 hasConceptScore W1949096787C124101348 @default.
- W1949096787 hasConceptScore W1949096787C138268822 @default.
- W1949096787 hasConceptScore W1949096787C138885662 @default.
- W1949096787 hasConceptScore W1949096787C150899416 @default.
- W1949096787 hasConceptScore W1949096787C153180895 @default.
- W1949096787 hasConceptScore W1949096787C154945302 @default.
- W1949096787 hasConceptScore W1949096787C185592680 @default.
- W1949096787 hasConceptScore W1949096787C198531522 @default.
- W1949096787 hasConceptScore W1949096787C2780586882 @default.
- W1949096787 hasConceptScore W1949096787C41008148 @default.
- W1949096787 hasConceptScore W1949096787C43617362 @default.
- W1949096787 hasConceptScore W1949096787C51632099 @default.
- W1949096787 hasConceptScore W1949096787C81917197 @default.
- W1949096787 hasIssue "2" @default.
- W1949096787 hasLocation W19490967871 @default.
- W1949096787 hasOpenAccess W1949096787 @default.
- W1949096787 hasPrimaryLocation W19490967871 @default.
- W1949096787 hasRelatedWork W1585007175 @default.
- W1949096787 hasRelatedWork W2144385241 @default.
- W1949096787 hasRelatedWork W2165950148 @default.
- W1949096787 hasRelatedWork W2338854850 @default.
- W1949096787 hasRelatedWork W2382521049 @default.
- W1949096787 hasRelatedWork W2951497643 @default.
- W1949096787 hasRelatedWork W3121712119 @default.
- W1949096787 hasRelatedWork W4253593777 @default.
- W1949096787 hasRelatedWork W4300101996 @default.
- W1949096787 hasRelatedWork W2184239527 @default.
- W1949096787 hasVolume "34" @default.
- W1949096787 isParatext "false" @default.