Matches in SemOpenAlex for { <https://semopenalex.org/work/W1949167512> ?p ?o ?g. }
- W1949167512 abstract "Feature selection is demanded in many modern scientific research problems that use high-dimensional data. A typical example is to find the most useful genes that are related to a certain disease (eg, cancer) from high-dimensional gene expressions. The expressions of genes have grouping structures, for example, a group of co-regulated genes that have similar biological functions tend to have similar expressions. In this paper, we propose to use a sophisticated Markov chain Monte Carlo method (Hamiltonian Monte Carlo in restricted Gibbs sampling) to fit Robit regression with heavy-tailed priors to make selection in the features with grouping structure. We will refer to this method as fully Bayesian Robit with Heavy-tailed prior (shortened by FBRHT). The main features of FBRHT are that it discards more aggressively unrelated features than LASSO, and also makes feature selection within groups automatically without a pre-specified grouping structure. Consequently, the feature subsets selected by FBRHT are significantly more sparse with only one representative from each group retained in the selected subset. In this paper, we use simulated and real datasets to demonstrate this within-group selection property of heavy-tailed priors. In general, we do not expect that such succinct feature subsets have better predictive power than the subsets of much larger size. Nevertheless, we will see that the predictive power of the sparse feature subsets selected by FBRHT are comparable with other much larger feature subsets selected by LASSO, group LASSO, supervised group LASSO, penalized logistic regression and random forest. In addition, we will show that the succinct feature subsets selected by FBRHT have significantly better predictive power than the feature subsets of the same size taken from the top features selected by the aforementioned methods." @default.
- W1949167512 created "2016-06-24" @default.
- W1949167512 creator A5045784932 @default.
- W1949167512 date "2015-10-08" @default.
- W1949167512 modified "2023-09-27" @default.
- W1949167512 title "Fully Bayesian T-probit Regression with Heavy-tailed Priors for Selection in High-Dimensional Features with Grouping Structure" @default.
- W1949167512 cites W1489608363 @default.
- W1949167512 cites W1520812622 @default.
- W1949167512 cites W1533335653 @default.
- W1949167512 cites W1539593569 @default.
- W1949167512 cites W1567512734 @default.
- W1949167512 cites W1582614941 @default.
- W1949167512 cites W1597575412 @default.
- W1949167512 cites W1603903339 @default.
- W1949167512 cites W1658817197 @default.
- W1949167512 cites W1813388215 @default.
- W1949167512 cites W191129667 @default.
- W1949167512 cites W1923906081 @default.
- W1949167512 cites W1943383135 @default.
- W1949167512 cites W1966411627 @default.
- W1949167512 cites W1966701961 @default.
- W1949167512 cites W1969415786 @default.
- W1949167512 cites W1972928786 @default.
- W1949167512 cites W1976365540 @default.
- W1949167512 cites W1977868384 @default.
- W1949167512 cites W1986544564 @default.
- W1949167512 cites W1993528080 @default.
- W1949167512 cites W1998871699 @default.
- W1949167512 cites W1999974018 @default.
- W1949167512 cites W2000692032 @default.
- W1949167512 cites W2006617902 @default.
- W1949167512 cites W2007069447 @default.
- W1949167512 cites W2010111480 @default.
- W1949167512 cites W2011471859 @default.
- W1949167512 cites W2014725748 @default.
- W1949167512 cites W2014977509 @default.
- W1949167512 cites W2020925091 @default.
- W1949167512 cites W2020999234 @default.
- W1949167512 cites W2024765216 @default.
- W1949167512 cites W2036183522 @default.
- W1949167512 cites W2039050532 @default.
- W1949167512 cites W2045492227 @default.
- W1949167512 cites W2049633694 @default.
- W1949167512 cites W2050551672 @default.
- W1949167512 cites W2051817458 @default.
- W1949167512 cites W2054100651 @default.
- W1949167512 cites W2055025635 @default.
- W1949167512 cites W2056760934 @default.
- W1949167512 cites W2057291289 @default.
- W1949167512 cites W2059448777 @default.
- W1949167512 cites W2060181635 @default.
- W1949167512 cites W2060512257 @default.
- W1949167512 cites W2063978378 @default.
- W1949167512 cites W2070612147 @default.
- W1949167512 cites W2071949631 @default.
- W1949167512 cites W2074682976 @default.
- W1949167512 cites W2078129874 @default.
- W1949167512 cites W2086099578 @default.
- W1949167512 cites W2087347434 @default.
- W1949167512 cites W2087684630 @default.
- W1949167512 cites W2094230476 @default.
- W1949167512 cites W2096863518 @default.
- W1949167512 cites W2097839764 @default.
- W1949167512 cites W2098421151 @default.
- W1949167512 cites W2103371001 @default.
- W1949167512 cites W2103453943 @default.
- W1949167512 cites W2104232463 @default.
- W1949167512 cites W2105882193 @default.
- W1949167512 cites W2106398669 @default.
- W1949167512 cites W2108043112 @default.
- W1949167512 cites W2109715166 @default.
- W1949167512 cites W2111208057 @default.
- W1949167512 cites W2114169935 @default.
- W1949167512 cites W2117135012 @default.
- W1949167512 cites W2118522007 @default.
- W1949167512 cites W2119444931 @default.
- W1949167512 cites W2119821739 @default.
- W1949167512 cites W2121418514 @default.
- W1949167512 cites W2134012062 @default.
- W1949167512 cites W2135046866 @default.
- W1949167512 cites W2138019504 @default.
- W1949167512 cites W2138550913 @default.
- W1949167512 cites W2140514146 @default.
- W1949167512 cites W2142460132 @default.
- W1949167512 cites W2146462263 @default.
- W1949167512 cites W2148534890 @default.
- W1949167512 cites W2149199519 @default.
- W1949167512 cites W2150847344 @default.
- W1949167512 cites W2156912993 @default.
- W1949167512 cites W2157795344 @default.
- W1949167512 cites W2157801062 @default.
- W1949167512 cites W2159347337 @default.
- W1949167512 cites W2161689087 @default.
- W1949167512 cites W2166183437 @default.
- W1949167512 cites W2401349765 @default.
- W1949167512 cites W2497431972 @default.
- W1949167512 cites W2532697914 @default.
- W1949167512 cites W2787082951 @default.
- W1949167512 cites W2911964244 @default.
- W1949167512 cites W2949704762 @default.