Matches in SemOpenAlex for { <https://semopenalex.org/work/W1949206761> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W1949206761 abstract "The model averaging problem is to average multiple models to achieve a prediction accuracy not much worse than that of the best single model in terms of mean squared error. It is known that if the models are misspecified, model averaging is superior to model selection. Specifically, let $n$ be the sample size, then the worst case regret of the former decays at a rate of $O(1/n)$ while the worst case regret of the latter decays at a rate of $O(1/sqrt{n})$. The recently proposed $Q$-aggregation algorithm citep{DaiRigZhang12} solves the model averaging problem with the optimal regret of $O(1/n)$ both in expectation and in deviation; however it suffers from two limitations: (1) for continuous dictionary, the proposed greedy algorithm for solving $Q$-aggregation is not applicable; (2) the formulation of $Q$-aggregation appears ad hoc without clear intuition. This paper examines a different approach to model averaging by considering a Bayes estimator for deviation optimal model averaging by using exponentiated least squares loss. We establish a primal-dual relationship of this estimator and that of $Q$-aggregation and propose new greedy procedures that satisfactorily resolve the above mentioned limitations of $Q$-aggregation." @default.
- W1949206761 created "2016-06-24" @default.
- W1949206761 creator A5012002926 @default.
- W1949206761 creator A5020958723 @default.
- W1949206761 creator A5037709424 @default.
- W1949206761 creator A5049616921 @default.
- W1949206761 date "2014-08-06" @default.
- W1949206761 modified "2023-09-27" @default.
- W1949206761 title "Bayesian Model Averaging with Exponentiated Least Square Loss" @default.
- W1949206761 cites W1509060282 @default.
- W1949206761 cites W1568288633 @default.
- W1949206761 cites W1575244755 @default.
- W1949206761 cites W1602551265 @default.
- W1949206761 cites W1685973565 @default.
- W1949206761 cites W2044828368 @default.
- W1949206761 cites W2103619557 @default.
- W1949206761 cites W2105516453 @default.
- W1949206761 cites W2116356927 @default.
- W1949206761 cites W2136885855 @default.
- W1949206761 cites W2154637324 @default.
- W1949206761 cites W2166116275 @default.
- W1949206761 cites W2296319761 @default.
- W1949206761 cites W3102055739 @default.
- W1949206761 cites W3141595720 @default.
- W1949206761 hasPublicationYear "2014" @default.
- W1949206761 type Work @default.
- W1949206761 sameAs 1949206761 @default.
- W1949206761 citedByCount "0" @default.
- W1949206761 crossrefType "posted-content" @default.
- W1949206761 hasAuthorship W1949206761A5012002926 @default.
- W1949206761 hasAuthorship W1949206761A5020958723 @default.
- W1949206761 hasAuthorship W1949206761A5037709424 @default.
- W1949206761 hasAuthorship W1949206761A5049616921 @default.
- W1949206761 hasConcept C105795698 @default.
- W1949206761 hasConcept C107673813 @default.
- W1949206761 hasConcept C126255220 @default.
- W1949206761 hasConcept C139945424 @default.
- W1949206761 hasConcept C160234255 @default.
- W1949206761 hasConcept C185429906 @default.
- W1949206761 hasConcept C28826006 @default.
- W1949206761 hasConcept C33923547 @default.
- W1949206761 hasConcept C50817715 @default.
- W1949206761 hasConceptScore W1949206761C105795698 @default.
- W1949206761 hasConceptScore W1949206761C107673813 @default.
- W1949206761 hasConceptScore W1949206761C126255220 @default.
- W1949206761 hasConceptScore W1949206761C139945424 @default.
- W1949206761 hasConceptScore W1949206761C160234255 @default.
- W1949206761 hasConceptScore W1949206761C185429906 @default.
- W1949206761 hasConceptScore W1949206761C28826006 @default.
- W1949206761 hasConceptScore W1949206761C33923547 @default.
- W1949206761 hasConceptScore W1949206761C50817715 @default.
- W1949206761 hasLocation W19492067611 @default.
- W1949206761 hasOpenAccess W1949206761 @default.
- W1949206761 hasPrimaryLocation W19492067611 @default.
- W1949206761 hasRelatedWork W1479673677 @default.
- W1949206761 hasRelatedWork W1668719373 @default.
- W1949206761 hasRelatedWork W1984803228 @default.
- W1949206761 hasRelatedWork W2002255430 @default.
- W1949206761 hasRelatedWork W2262493915 @default.
- W1949206761 hasRelatedWork W2266192008 @default.
- W1949206761 hasRelatedWork W2290516599 @default.
- W1949206761 hasRelatedWork W2951941752 @default.
- W1949206761 hasRelatedWork W2952412960 @default.
- W1949206761 hasRelatedWork W2963078975 @default.
- W1949206761 hasRelatedWork W2991232843 @default.
- W1949206761 hasRelatedWork W2998520009 @default.
- W1949206761 hasRelatedWork W3003084354 @default.
- W1949206761 hasRelatedWork W3035763474 @default.
- W1949206761 hasRelatedWork W3099968609 @default.
- W1949206761 hasRelatedWork W3132406021 @default.
- W1949206761 hasRelatedWork W3138526660 @default.
- W1949206761 hasRelatedWork W3156310190 @default.
- W1949206761 hasRelatedWork W3167602277 @default.
- W1949206761 hasRelatedWork W3194876380 @default.
- W1949206761 isParatext "false" @default.
- W1949206761 isRetracted "false" @default.
- W1949206761 magId "1949206761" @default.
- W1949206761 workType "article" @default.