Matches in SemOpenAlex for { <https://semopenalex.org/work/W1949566123> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1949566123 abstract "Automatic main subject detection refers to the problem of determining salient or interesting regions in an image. We propose the use of a Bayesian network-based approach to solving this problem in the unconstrained domain of consumer photographic images. Various image sensors, derived from the classical computer vision literature as well as other sources, can provide evidence about main subject regions in images. A traditional sensor fusion scheme, such as a Kalman filter, fuzzy logic or simple Bayesian estimation, does not provide sufficient expressive power to capture the uncertainties and dependencies exhibited by such a system. We present a multi-level Bayesian network that accurately models the system and allows for sensor integration in an evidential framework. The multi-level Bayesian network performs better than a simple single-level Bayesian network at accurately combining various image sensor data to construct a belief map identifying the main subject regions in the image. A subsequent study also shows that the multi-level Bayesian network performs better than a linear classification scheme, as well as one based on neural networks." @default.
- W1949566123 created "2016-06-24" @default.
- W1949566123 creator A5046519101 @default.
- W1949566123 creator A5068956538 @default.
- W1949566123 creator A5086991902 @default.
- W1949566123 date "2000-01-01" @default.
- W1949566123 modified "2023-10-04" @default.
- W1949566123 title "A multilevel Bayesian network approach to image sensor fusion" @default.
- W1949566123 cites W1488817203 @default.
- W1949566123 cites W1511949525 @default.
- W1949566123 cites W1689060901 @default.
- W1949566123 cites W1959201078 @default.
- W1949566123 cites W1976025569 @default.
- W1949566123 cites W2052305127 @default.
- W1949566123 cites W2079344866 @default.
- W1949566123 cites W2093922893 @default.
- W1949566123 cites W2142663317 @default.
- W1949566123 cites W2159879829 @default.
- W1949566123 doi "https://doi.org/10.1109/ific.2000.859826" @default.
- W1949566123 hasPublicationYear "2000" @default.
- W1949566123 type Work @default.
- W1949566123 sameAs 1949566123 @default.
- W1949566123 citedByCount "9" @default.
- W1949566123 crossrefType "proceedings-article" @default.
- W1949566123 hasAuthorship W1949566123A5046519101 @default.
- W1949566123 hasAuthorship W1949566123A5068956538 @default.
- W1949566123 hasAuthorship W1949566123A5086991902 @default.
- W1949566123 hasConcept C107673813 @default.
- W1949566123 hasConcept C119857082 @default.
- W1949566123 hasConcept C124101348 @default.
- W1949566123 hasConcept C153180895 @default.
- W1949566123 hasConcept C154945302 @default.
- W1949566123 hasConcept C157286648 @default.
- W1949566123 hasConcept C160234255 @default.
- W1949566123 hasConcept C31972630 @default.
- W1949566123 hasConcept C33724603 @default.
- W1949566123 hasConcept C33954974 @default.
- W1949566123 hasConcept C40343088 @default.
- W1949566123 hasConcept C41008148 @default.
- W1949566123 hasConcept C58166 @default.
- W1949566123 hasConcept C71983512 @default.
- W1949566123 hasConcept C82142266 @default.
- W1949566123 hasConceptScore W1949566123C107673813 @default.
- W1949566123 hasConceptScore W1949566123C119857082 @default.
- W1949566123 hasConceptScore W1949566123C124101348 @default.
- W1949566123 hasConceptScore W1949566123C153180895 @default.
- W1949566123 hasConceptScore W1949566123C154945302 @default.
- W1949566123 hasConceptScore W1949566123C157286648 @default.
- W1949566123 hasConceptScore W1949566123C160234255 @default.
- W1949566123 hasConceptScore W1949566123C31972630 @default.
- W1949566123 hasConceptScore W1949566123C33724603 @default.
- W1949566123 hasConceptScore W1949566123C33954974 @default.
- W1949566123 hasConceptScore W1949566123C40343088 @default.
- W1949566123 hasConceptScore W1949566123C41008148 @default.
- W1949566123 hasConceptScore W1949566123C58166 @default.
- W1949566123 hasConceptScore W1949566123C71983512 @default.
- W1949566123 hasConceptScore W1949566123C82142266 @default.
- W1949566123 hasLocation W19495661231 @default.
- W1949566123 hasOpenAccess W1949566123 @default.
- W1949566123 hasPrimaryLocation W19495661231 @default.
- W1949566123 hasRelatedWork W1560170243 @default.
- W1949566123 hasRelatedWork W1994673457 @default.
- W1949566123 hasRelatedWork W2034884172 @default.
- W1949566123 hasRelatedWork W2112004925 @default.
- W1949566123 hasRelatedWork W2215058820 @default.
- W1949566123 hasRelatedWork W2406874314 @default.
- W1949566123 hasRelatedWork W2579850834 @default.
- W1949566123 hasRelatedWork W2824679077 @default.
- W1949566123 hasRelatedWork W2902480041 @default.
- W1949566123 hasRelatedWork W4288327045 @default.
- W1949566123 isParatext "false" @default.
- W1949566123 isRetracted "false" @default.
- W1949566123 magId "1949566123" @default.
- W1949566123 workType "article" @default.