Matches in SemOpenAlex for { <https://semopenalex.org/work/W195002> ?p ?o ?g. }
- W195002 endingPage "225" @default.
- W195002 startingPage "205" @default.
- W195002 abstract "Advances in bio-technology and life sciences are leading to an ever-increasing volume of published research data, predominantly in unstructured text. To uncover the underlying knowledge base hidden in such data, text mining techniques have been utilized. Past and current efforts in this area have been largely focusing on recognizing gene and protein names, and identifying binary relationships among genes or proteins. In this chapter, we present an information extraction system that analyzes publications in an emerging discipline–Nutritional Genomics, a discipline that studies the interactions amongst genes, foods and diseases–aiming to build a quantitative food-disease-gene network. To this end, we adopt a host of techniques including natural language processing (NLP) techniques, domain ontology, and machine learning approaches. Specifically, the proposed system is composed of four main modules: (1) named entity recognition, which extracts five types of entities including foods, chemicals, diseases, proteins and genes; (2) relationship extraction: A verb-centric approach is implemented to extract binary relationships between two entities; (3) relationship polarity and strength analysis: We have constructed novel features to capture the syntactic, semantic and structural aspects of a relationship. A 2-phase Support Vector Machine is then used to classify the polarity, whereas a Support Vector Regression learner is applied to rate the strength level of a relationship; and (4) relationship integration and visualization, which integrates the previously extracted relationships and realizes a preliminary user interface for intuitive observation and exploration. Empirical evaluations of the first three modules demonstrate the efficacy of this system. The entity recognition module achieved a balanced precision and recall with an average F-score of 0.89. The average F-score of the extracted relationships is 0.905. Finally, an accuracy of 0.91 and 0.96 was achieved in classifying the relationship polarity and rating the relationship strength level, respectively.." @default.
- W195002 created "2016-06-24" @default.
- W195002 creator A5005064070 @default.
- W195002 creator A5013881706 @default.
- W195002 creator A5022568715 @default.
- W195002 creator A5056615379 @default.
- W195002 creator A5076249543 @default.
- W195002 date "2011-01-01" @default.
- W195002 modified "2023-09-24" @default.
- W195002 title "Mining Biomedical Text towards Building a Quantitative Food-Disease-Gene Network" @default.
- W195002 cites W1964613733 @default.
- W195002 cites W1965789647 @default.
- W195002 cites W1981793043 @default.
- W195002 cites W2007287574 @default.
- W195002 cites W2011726136 @default.
- W195002 cites W2015954361 @default.
- W195002 cites W2038316408 @default.
- W195002 cites W2044514479 @default.
- W195002 cites W2051279486 @default.
- W195002 cites W2053673723 @default.
- W195002 cites W2075394275 @default.
- W195002 cites W2082201811 @default.
- W195002 cites W2083412062 @default.
- W195002 cites W2097960255 @default.
- W195002 cites W2101727078 @default.
- W195002 cites W2102651936 @default.
- W195002 cites W2113202266 @default.
- W195002 cites W2113613985 @default.
- W195002 cites W2120535580 @default.
- W195002 cites W2122904379 @default.
- W195002 cites W2127976940 @default.
- W195002 cites W2130190939 @default.
- W195002 cites W2132655161 @default.
- W195002 cites W2148282068 @default.
- W195002 cites W2161890636 @default.
- W195002 cites W2164173383 @default.
- W195002 cites W2165741325 @default.
- W195002 cites W2166706824 @default.
- W195002 cites W2169918010 @default.
- W195002 cites W2793828080 @default.
- W195002 cites W4235505822 @default.
- W195002 cites W4252545078 @default.
- W195002 cites W4376542711 @default.
- W195002 doi "https://doi.org/10.1007/978-3-642-22913-8_10" @default.
- W195002 hasPublicationYear "2011" @default.
- W195002 type Work @default.
- W195002 sameAs 195002 @default.
- W195002 citedByCount "15" @default.
- W195002 countsByYear W1950022012 @default.
- W195002 countsByYear W1950022013 @default.
- W195002 countsByYear W1950022015 @default.
- W195002 countsByYear W1950022016 @default.
- W195002 countsByYear W1950022018 @default.
- W195002 countsByYear W1950022020 @default.
- W195002 countsByYear W1950022022 @default.
- W195002 countsByYear W1950022023 @default.
- W195002 crossrefType "book-chapter" @default.
- W195002 hasAuthorship W195002A5005064070 @default.
- W195002 hasAuthorship W195002A5013881706 @default.
- W195002 hasAuthorship W195002A5022568715 @default.
- W195002 hasAuthorship W195002A5056615379 @default.
- W195002 hasAuthorship W195002A5076249543 @default.
- W195002 hasConcept C111472728 @default.
- W195002 hasConcept C119857082 @default.
- W195002 hasConcept C12267149 @default.
- W195002 hasConcept C127413603 @default.
- W195002 hasConcept C134306372 @default.
- W195002 hasConcept C138885662 @default.
- W195002 hasConcept C153604712 @default.
- W195002 hasConcept C154945302 @default.
- W195002 hasConcept C165141518 @default.
- W195002 hasConcept C195807954 @default.
- W195002 hasConcept C201995342 @default.
- W195002 hasConcept C204321447 @default.
- W195002 hasConcept C23123220 @default.
- W195002 hasConcept C2522767166 @default.
- W195002 hasConcept C25810664 @default.
- W195002 hasConcept C2779135771 @default.
- W195002 hasConcept C2780451532 @default.
- W195002 hasConcept C33923547 @default.
- W195002 hasConcept C36503486 @default.
- W195002 hasConcept C41008148 @default.
- W195002 hasConcept C4554734 @default.
- W195002 hasConcept C66905080 @default.
- W195002 hasConcept C71472368 @default.
- W195002 hasConceptScore W195002C111472728 @default.
- W195002 hasConceptScore W195002C119857082 @default.
- W195002 hasConceptScore W195002C12267149 @default.
- W195002 hasConceptScore W195002C127413603 @default.
- W195002 hasConceptScore W195002C134306372 @default.
- W195002 hasConceptScore W195002C138885662 @default.
- W195002 hasConceptScore W195002C153604712 @default.
- W195002 hasConceptScore W195002C154945302 @default.
- W195002 hasConceptScore W195002C165141518 @default.
- W195002 hasConceptScore W195002C195807954 @default.
- W195002 hasConceptScore W195002C201995342 @default.
- W195002 hasConceptScore W195002C204321447 @default.
- W195002 hasConceptScore W195002C23123220 @default.