Matches in SemOpenAlex for { <https://semopenalex.org/work/W1950762512> ?p ?o ?g. }
- W1950762512 abstract "This thesis is concerned with the application of system identification techniques to the analysis of complex physiological systems. The techniques are applied to neuronal spike-train data obtained from elements of the neuromuscular system. A brief description of the neuromuscular system is given in chapter 1, along with a more detailed discussion of the muscle spindle, which is the component of the neuromuscular system which this study deals with. In addition, some possibilities for system identification studies of the muscle spindle are discussed. The identification procedure is based on statistical methods for the treatment of point-process data. The point-process representation of a spike-train is introduced in chapter 2 with definitions of time and frequency domain point-process parameters. Estimates for these parameters are given, along with expressions for their asymptotic distributions. The linear point-process system identification model is introduced and estimates are described for the model parameters in terms of the previously defined point-process parameters. These point-process and linear parameter estimates are applied to muscle spindle spike-train data. In the analysis of a single spike-train certain important features only show up in the frequency domain, and for input and output spike-trains a linear transfer function type description is constructed in the frequency domain. The mathematical model of this transfer function is used as the basis for an analogue computer simulation of a subsystem of the muscle spindle. This consists of a linear first order filter followed by an encoder which generates output spikes. Data logged from the simulation is processed in the same manner as experimental data, and the effect of varying the simulation parameters on the linear model estimates is looked at. It is shown that in general the linear model description reflects the properties of the linear filter in the simulation, and varying the simulation parameters can be used to accurately match results from simulated data with those obtained from real data. Chapter 3 compares the point-process approach with a more conventional filtering and sampled data approach to estimate power spectra. The filtering of spike-trains with broad band spectra is investigated, and this shows up a pitfall in the choice of filter cut-off frequency. It is concluded that the point-process approach is preferable due to shorter computational times, and the well documented statistical propeties of the point-process estimates. The application of the point-process techniques described in chapter 2 to the analysis of more general spike-train data is considered in chapter 4. Three techniques for measuring the degree of coupling between two spike-trains are compared, and the point-process frequency domain measure is found to be the most sensitive. This measure is also applied to a data set containing a strong single periodicity, and the ability to detect coupling at a single harmonic is demonstrated. The analysis of coupling between spike-trains in the frequency domain is extended to deal with multiple spike-trains, and the ability to distinguish genuine coupling from the effect of a common input is shown to be a powerful tool which can be used to investigate communications pathways in neural systems. Finally, one special feature of the muscle spindle response to a spike-train input is analysed using the simulation. It is demonstrated that the point-process approach can produce results about a particular phenomenon from a single experiment much more rapidly than using a repetitive trial and error approach. Chapter 5 considers the extension of the linear point-process identification model introduced in chapter 2. Higher order time and frequency domain point-process parameters are defined and estimates given. In the time domain, a new technique for rapidly generating higher order time domain parameters is developed. The quadratic point-process model is introduced and solutions for its parameters given. These estimates are applied to muscle" @default.
- W1950762512 created "2016-06-24" @default.
- W1950762512 creator A5026981278 @default.
- W1950762512 date "1986-01-01" @default.
- W1950762512 modified "2023-10-17" @default.
- W1950762512 title "Application of point-process system identification techniques to complex physiological systems" @default.
- W1950762512 hasPublicationYear "1986" @default.
- W1950762512 type Work @default.
- W1950762512 sameAs 1950762512 @default.
- W1950762512 citedByCount "1" @default.
- W1950762512 crossrefType "dissertation" @default.
- W1950762512 hasAuthorship W1950762512A5026981278 @default.
- W1950762512 hasConcept C103824480 @default.
- W1950762512 hasConcept C105795698 @default.
- W1950762512 hasConcept C111919701 @default.
- W1950762512 hasConcept C11413529 @default.
- W1950762512 hasConcept C115903868 @default.
- W1950762512 hasConcept C116834253 @default.
- W1950762512 hasConcept C119247159 @default.
- W1950762512 hasConcept C119599485 @default.
- W1950762512 hasConcept C127413603 @default.
- W1950762512 hasConcept C154945302 @default.
- W1950762512 hasConcept C17744445 @default.
- W1950762512 hasConcept C19118579 @default.
- W1950762512 hasConcept C199539241 @default.
- W1950762512 hasConcept C2524010 @default.
- W1950762512 hasConcept C2775924081 @default.
- W1950762512 hasConcept C2776359362 @default.
- W1950762512 hasConcept C2781390188 @default.
- W1950762512 hasConcept C28719098 @default.
- W1950762512 hasConcept C2909946758 @default.
- W1950762512 hasConcept C31972630 @default.
- W1950762512 hasConcept C33923547 @default.
- W1950762512 hasConcept C41008148 @default.
- W1950762512 hasConcept C47446073 @default.
- W1950762512 hasConcept C59822182 @default.
- W1950762512 hasConcept C67186912 @default.
- W1950762512 hasConcept C77088390 @default.
- W1950762512 hasConcept C81299745 @default.
- W1950762512 hasConcept C86803240 @default.
- W1950762512 hasConcept C88871306 @default.
- W1950762512 hasConcept C94625758 @default.
- W1950762512 hasConcept C98045186 @default.
- W1950762512 hasConceptScore W1950762512C103824480 @default.
- W1950762512 hasConceptScore W1950762512C105795698 @default.
- W1950762512 hasConceptScore W1950762512C111919701 @default.
- W1950762512 hasConceptScore W1950762512C11413529 @default.
- W1950762512 hasConceptScore W1950762512C115903868 @default.
- W1950762512 hasConceptScore W1950762512C116834253 @default.
- W1950762512 hasConceptScore W1950762512C119247159 @default.
- W1950762512 hasConceptScore W1950762512C119599485 @default.
- W1950762512 hasConceptScore W1950762512C127413603 @default.
- W1950762512 hasConceptScore W1950762512C154945302 @default.
- W1950762512 hasConceptScore W1950762512C17744445 @default.
- W1950762512 hasConceptScore W1950762512C19118579 @default.
- W1950762512 hasConceptScore W1950762512C199539241 @default.
- W1950762512 hasConceptScore W1950762512C2524010 @default.
- W1950762512 hasConceptScore W1950762512C2775924081 @default.
- W1950762512 hasConceptScore W1950762512C2776359362 @default.
- W1950762512 hasConceptScore W1950762512C2781390188 @default.
- W1950762512 hasConceptScore W1950762512C28719098 @default.
- W1950762512 hasConceptScore W1950762512C2909946758 @default.
- W1950762512 hasConceptScore W1950762512C31972630 @default.
- W1950762512 hasConceptScore W1950762512C33923547 @default.
- W1950762512 hasConceptScore W1950762512C41008148 @default.
- W1950762512 hasConceptScore W1950762512C47446073 @default.
- W1950762512 hasConceptScore W1950762512C59822182 @default.
- W1950762512 hasConceptScore W1950762512C67186912 @default.
- W1950762512 hasConceptScore W1950762512C77088390 @default.
- W1950762512 hasConceptScore W1950762512C81299745 @default.
- W1950762512 hasConceptScore W1950762512C86803240 @default.
- W1950762512 hasConceptScore W1950762512C88871306 @default.
- W1950762512 hasConceptScore W1950762512C94625758 @default.
- W1950762512 hasConceptScore W1950762512C98045186 @default.
- W1950762512 hasLocation W19507625121 @default.
- W1950762512 hasOpenAccess W1950762512 @default.
- W1950762512 hasPrimaryLocation W19507625121 @default.
- W1950762512 hasRelatedWork W1526603458 @default.
- W1950762512 hasRelatedWork W1548714500 @default.
- W1950762512 hasRelatedWork W1565749357 @default.
- W1950762512 hasRelatedWork W1569358535 @default.
- W1950762512 hasRelatedWork W190188859 @default.
- W1950762512 hasRelatedWork W1966264494 @default.
- W1950762512 hasRelatedWork W1977686044 @default.
- W1950762512 hasRelatedWork W1994395710 @default.
- W1950762512 hasRelatedWork W2096303745 @default.
- W1950762512 hasRelatedWork W2098707902 @default.
- W1950762512 hasRelatedWork W2114032728 @default.
- W1950762512 hasRelatedWork W2125317014 @default.
- W1950762512 hasRelatedWork W2129302977 @default.
- W1950762512 hasRelatedWork W2146277793 @default.
- W1950762512 hasRelatedWork W2172040238 @default.
- W1950762512 hasRelatedWork W2732151775 @default.
- W1950762512 hasRelatedWork W2908235194 @default.
- W1950762512 hasRelatedWork W610190280 @default.
- W1950762512 hasRelatedWork W1651588856 @default.
- W1950762512 hasRelatedWork W1971600813 @default.
- W1950762512 isParatext "false" @default.
- W1950762512 isRetracted "false" @default.
- W1950762512 magId "1950762512" @default.