Matches in SemOpenAlex for { <https://semopenalex.org/work/W19508943> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W19508943 endingPage "628" @default.
- W19508943 startingPage "620" @default.
- W19508943 abstract "Most existing feature selection methods focus on ranking individual features based on a utility criterion, and select the optimal feature set in a greedy manner. However, the feature combinations found in this way do not give optimal classification performance, since they neglect the correlations among features. In an attempt to overcome this problem, we develop a novel unsupervised feature selection technique by using hypergraph spectral embedding, where the projection matrix is constrained to be a selection matrix designed to select the optimal feature subset. Specifically, by incorporating multidimensional interaction information (MII) for higher order similarities measure, we establish a novel hypergraph framework which is used for characterizing the multiple relationships within a set of samples. Thus, the structural information latent in the data can be more effectively modeled. Secondly, we derive a hypergraph embedding view of feature selection which casting the feature discriminant analysis into a regression framework that considers the correlations among features. As a result, we can evaluate joint feature combinations, rather than being confined to consider them individually, and are thus able to handle feature redundancy. Experimental results demonstrate the effectiveness of our feature selection method on a number of standard datasets." @default.
- W19508943 created "2016-06-24" @default.
- W19508943 creator A5030833954 @default.
- W19508943 creator A5074364400 @default.
- W19508943 date "2012-01-01" @default.
- W19508943 modified "2023-09-27" @default.
- W19508943 title "Hypergraph Spectra for Unsupervised Feature Selection" @default.
- W19508943 cites W1506013575 @default.
- W19508943 cites W2024165284 @default.
- W19508943 cites W2063978378 @default.
- W19508943 cites W2095104538 @default.
- W19508943 cites W2124583124 @default.
- W19508943 cites W2128873747 @default.
- W19508943 cites W2140095548 @default.
- W19508943 cites W2154053567 @default.
- W19508943 cites W2158579916 @default.
- W19508943 cites W2158933803 @default.
- W19508943 cites W4302564868 @default.
- W19508943 doi "https://doi.org/10.1007/978-3-642-34166-3_68" @default.
- W19508943 hasPublicationYear "2012" @default.
- W19508943 type Work @default.
- W19508943 sameAs 19508943 @default.
- W19508943 citedByCount "0" @default.
- W19508943 crossrefType "book-chapter" @default.
- W19508943 hasAuthorship W19508943A5030833954 @default.
- W19508943 hasAuthorship W19508943A5074364400 @default.
- W19508943 hasBestOaLocation W195089431 @default.
- W19508943 hasConcept C111919701 @default.
- W19508943 hasConcept C11413529 @default.
- W19508943 hasConcept C118615104 @default.
- W19508943 hasConcept C124101348 @default.
- W19508943 hasConcept C138885662 @default.
- W19508943 hasConcept C148483581 @default.
- W19508943 hasConcept C152124472 @default.
- W19508943 hasConcept C153180895 @default.
- W19508943 hasConcept C154945302 @default.
- W19508943 hasConcept C16811321 @default.
- W19508943 hasConcept C2776401178 @default.
- W19508943 hasConcept C2781221856 @default.
- W19508943 hasConcept C33923547 @default.
- W19508943 hasConcept C41008148 @default.
- W19508943 hasConcept C41608201 @default.
- W19508943 hasConcept C41895202 @default.
- W19508943 hasConcept C52622490 @default.
- W19508943 hasConcept C57493831 @default.
- W19508943 hasConceptScore W19508943C111919701 @default.
- W19508943 hasConceptScore W19508943C11413529 @default.
- W19508943 hasConceptScore W19508943C118615104 @default.
- W19508943 hasConceptScore W19508943C124101348 @default.
- W19508943 hasConceptScore W19508943C138885662 @default.
- W19508943 hasConceptScore W19508943C148483581 @default.
- W19508943 hasConceptScore W19508943C152124472 @default.
- W19508943 hasConceptScore W19508943C153180895 @default.
- W19508943 hasConceptScore W19508943C154945302 @default.
- W19508943 hasConceptScore W19508943C16811321 @default.
- W19508943 hasConceptScore W19508943C2776401178 @default.
- W19508943 hasConceptScore W19508943C2781221856 @default.
- W19508943 hasConceptScore W19508943C33923547 @default.
- W19508943 hasConceptScore W19508943C41008148 @default.
- W19508943 hasConceptScore W19508943C41608201 @default.
- W19508943 hasConceptScore W19508943C41895202 @default.
- W19508943 hasConceptScore W19508943C52622490 @default.
- W19508943 hasConceptScore W19508943C57493831 @default.
- W19508943 hasLocation W195089431 @default.
- W19508943 hasOpenAccess W19508943 @default.
- W19508943 hasPrimaryLocation W195089431 @default.
- W19508943 hasRelatedWork W1520730836 @default.
- W19508943 hasRelatedWork W2163070219 @default.
- W19508943 hasRelatedWork W2286904880 @default.
- W19508943 hasRelatedWork W2392236103 @default.
- W19508943 hasRelatedWork W2546942002 @default.
- W19508943 hasRelatedWork W2592385986 @default.
- W19508943 hasRelatedWork W2999462857 @default.
- W19508943 hasRelatedWork W3015830444 @default.
- W19508943 hasRelatedWork W4293660994 @default.
- W19508943 hasRelatedWork W2345184372 @default.
- W19508943 isParatext "false" @default.
- W19508943 isRetracted "false" @default.
- W19508943 magId "19508943" @default.
- W19508943 workType "book-chapter" @default.