Matches in SemOpenAlex for { <https://semopenalex.org/work/W1952202204> ?p ?o ?g. }
- W1952202204 endingPage "311" @default.
- W1952202204 startingPage "304" @default.
- W1952202204 abstract "Kernel machines and rough sets are two classes of popular learning techniques. Kernel machines enhance traditional linear learning algorithms to deal with nonlinear domains by a nonlinear mapping, while rough sets introduce a human-like manner to deal with uncertainty in learning. Granulation and approximation play a central role in rough sets based learning and reasoning. Fuzzy granulation and fuzzy approximation, which is inspired by the ways in which humans granulate information and reason with it, are widely discussed in literatures. However, how to generate effective fuzzy granules from data has not been fully studied so far. In this work, we integrate kernel functions with fuzzy rough set models and propose two types of kernelized fuzzy rough sets. Kernel functions are employed to compute the fuzzy T-equivalence relations between samples, thus generate fuzzy information granules of the approximation space, and then these fuzzy granules are used to approximate the classification based on the conception of fuzzy lower and upper approximations." @default.
- W1952202204 created "2016-06-24" @default.
- W1952202204 creator A5003799782 @default.
- W1952202204 creator A5056686459 @default.
- W1952202204 creator A5061917583 @default.
- W1952202204 creator A5069347046 @default.
- W1952202204 date "2009-01-01" @default.
- W1952202204 modified "2023-09-26" @default.
- W1952202204 title "Kernelized Fuzzy Rough Sets" @default.
- W1952202204 cites W1510073064 @default.
- W1952202204 cites W1808644423 @default.
- W1952202204 cites W2002680690 @default.
- W1952202204 cites W2014827534 @default.
- W1952202204 cites W2018786061 @default.
- W1952202204 cites W2021680742 @default.
- W1952202204 cites W2027654459 @default.
- W1952202204 cites W2047863499 @default.
- W1952202204 cites W2050401513 @default.
- W1952202204 cites W2053623704 @default.
- W1952202204 cites W2082173396 @default.
- W1952202204 cites W2084980758 @default.
- W1952202204 cites W2097923398 @default.
- W1952202204 cites W2137396323 @default.
- W1952202204 cites W2143083003 @default.
- W1952202204 cites W2153676086 @default.
- W1952202204 cites W2158755163 @default.
- W1952202204 cites W2160307100 @default.
- W1952202204 cites W2912707296 @default.
- W1952202204 cites W3141507694 @default.
- W1952202204 cites W4232953319 @default.
- W1952202204 doi "https://doi.org/10.1007/978-3-642-02962-2_38" @default.
- W1952202204 hasPublicationYear "2009" @default.
- W1952202204 type Work @default.
- W1952202204 sameAs 1952202204 @default.
- W1952202204 citedByCount "6" @default.
- W1952202204 countsByYear W19522022042012 @default.
- W1952202204 countsByYear W19522022042015 @default.
- W1952202204 countsByYear W19522022042017 @default.
- W1952202204 countsByYear W19522022042018 @default.
- W1952202204 crossrefType "book-chapter" @default.
- W1952202204 hasAuthorship W1952202204A5003799782 @default.
- W1952202204 hasAuthorship W1952202204A5056686459 @default.
- W1952202204 hasAuthorship W1952202204A5061917583 @default.
- W1952202204 hasAuthorship W1952202204A5069347046 @default.
- W1952202204 hasConcept C111012933 @default.
- W1952202204 hasConcept C118615104 @default.
- W1952202204 hasConcept C119857082 @default.
- W1952202204 hasConcept C124101348 @default.
- W1952202204 hasConcept C127385683 @default.
- W1952202204 hasConcept C148671577 @default.
- W1952202204 hasConcept C154945302 @default.
- W1952202204 hasConcept C170260401 @default.
- W1952202204 hasConcept C1883856 @default.
- W1952202204 hasConcept C33923547 @default.
- W1952202204 hasConcept C41008148 @default.
- W1952202204 hasConcept C42011625 @default.
- W1952202204 hasConcept C58166 @default.
- W1952202204 hasConcept C74193536 @default.
- W1952202204 hasConceptScore W1952202204C111012933 @default.
- W1952202204 hasConceptScore W1952202204C118615104 @default.
- W1952202204 hasConceptScore W1952202204C119857082 @default.
- W1952202204 hasConceptScore W1952202204C124101348 @default.
- W1952202204 hasConceptScore W1952202204C127385683 @default.
- W1952202204 hasConceptScore W1952202204C148671577 @default.
- W1952202204 hasConceptScore W1952202204C154945302 @default.
- W1952202204 hasConceptScore W1952202204C170260401 @default.
- W1952202204 hasConceptScore W1952202204C1883856 @default.
- W1952202204 hasConceptScore W1952202204C33923547 @default.
- W1952202204 hasConceptScore W1952202204C41008148 @default.
- W1952202204 hasConceptScore W1952202204C42011625 @default.
- W1952202204 hasConceptScore W1952202204C58166 @default.
- W1952202204 hasConceptScore W1952202204C74193536 @default.
- W1952202204 hasLocation W19522022041 @default.
- W1952202204 hasOpenAccess W1952202204 @default.
- W1952202204 hasPrimaryLocation W19522022041 @default.
- W1952202204 hasRelatedWork W1496571239 @default.
- W1952202204 hasRelatedWork W1571962750 @default.
- W1952202204 hasRelatedWork W1616031258 @default.
- W1952202204 hasRelatedWork W1663658588 @default.
- W1952202204 hasRelatedWork W2002193345 @default.
- W1952202204 hasRelatedWork W2003034634 @default.
- W1952202204 hasRelatedWork W2010160625 @default.
- W1952202204 hasRelatedWork W2017489710 @default.
- W1952202204 hasRelatedWork W2019693276 @default.
- W1952202204 hasRelatedWork W2020434719 @default.
- W1952202204 hasRelatedWork W2034094790 @default.
- W1952202204 hasRelatedWork W2040326946 @default.
- W1952202204 hasRelatedWork W2040365885 @default.
- W1952202204 hasRelatedWork W2096022482 @default.
- W1952202204 hasRelatedWork W2152168838 @default.
- W1952202204 hasRelatedWork W2155471048 @default.
- W1952202204 hasRelatedWork W2155951042 @default.
- W1952202204 hasRelatedWork W2157178751 @default.
- W1952202204 hasRelatedWork W2170450305 @default.
- W1952202204 hasRelatedWork W2534387209 @default.
- W1952202204 isParatext "false" @default.
- W1952202204 isRetracted "false" @default.
- W1952202204 magId "1952202204" @default.