Matches in SemOpenAlex for { <https://semopenalex.org/work/W19536506> ?p ?o ?g. }
- W19536506 endingPage "1253" @default.
- W19536506 startingPage "1241" @default.
- W19536506 abstract "Abstract A novel iterative k ‐space data‐driven technique, namely parallel reconstruction using null operations (PRUNO), is presented for parallel imaging reconstruction. In PRUNO, both data calibration and image reconstruction are formulated into linear algebra problems based on a generalized system model. An optimal data calibration strategy is demonstrated by using singular value decomposition, and an iterative conjugate‐gradient approach is proposed to efficiently solve missing k ‐space samples during reconstruction. With its generalized formulation and precise mathematical model, PRUNO reconstruction yields good accuracy, flexibility, and stability. Both computer simulation and in vivo studies have shown that PRUNO produces much better reconstruction quality than generalized autocalibrating partially parallel acquisition (GRAPPA), especially under high accelerating rates. With the aid of PRUNO reconstruction, ultra‐high accelerating parallel imaging can be performed with decent image quality. For example, we have done successful PRUNO reconstruction at a reduction factor of 6 (effective factor of 4.44) with eight coils and only a few autocalibration signal lines. Magn Reson Med, 2011. © 2011 Wiley Periodicals, Inc." @default.
- W19536506 created "2016-06-24" @default.
- W19536506 creator A5041037504 @default.
- W19536506 creator A5057209439 @default.
- W19536506 creator A5058725877 @default.
- W19536506 date "2011-05-20" @default.
- W19536506 modified "2023-10-17" @default.
- W19536506 title "Parallel reconstruction using null operations" @default.
- W19536506 cites W1523070141 @default.
- W19536506 cites W1979468143 @default.
- W19536506 cites W1992989309 @default.
- W19536506 cites W2043318028 @default.
- W19536506 cites W2063696976 @default.
- W19536506 cites W2066457009 @default.
- W19536506 cites W2081349413 @default.
- W19536506 cites W2090444578 @default.
- W19536506 cites W2101675075 @default.
- W19536506 cites W2111388536 @default.
- W19536506 cites W2122599572 @default.
- W19536506 cites W2151354228 @default.
- W19536506 cites W2155369619 @default.
- W19536506 cites W2160820770 @default.
- W19536506 cites W2165428057 @default.
- W19536506 cites W2415926755 @default.
- W19536506 cites W288345691 @default.
- W19536506 cites W4233097705 @default.
- W19536506 cites W4235964766 @default.
- W19536506 cites W4246884955 @default.
- W19536506 cites W4247766538 @default.
- W19536506 cites W4249760698 @default.
- W19536506 cites W4375819300 @default.
- W19536506 doi "https://doi.org/10.1002/mrm.22899" @default.
- W19536506 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3162069" @default.
- W19536506 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21604290" @default.
- W19536506 hasPublicationYear "2011" @default.
- W19536506 type Work @default.
- W19536506 sameAs 19536506 @default.
- W19536506 citedByCount "55" @default.
- W19536506 countsByYear W195365062012 @default.
- W19536506 countsByYear W195365062013 @default.
- W19536506 countsByYear W195365062014 @default.
- W19536506 countsByYear W195365062015 @default.
- W19536506 countsByYear W195365062016 @default.
- W19536506 countsByYear W195365062017 @default.
- W19536506 countsByYear W195365062018 @default.
- W19536506 countsByYear W195365062019 @default.
- W19536506 countsByYear W195365062020 @default.
- W19536506 countsByYear W195365062021 @default.
- W19536506 countsByYear W195365062022 @default.
- W19536506 countsByYear W195365062023 @default.
- W19536506 crossrefType "journal-article" @default.
- W19536506 hasAuthorship W19536506A5041037504 @default.
- W19536506 hasAuthorship W19536506A5057209439 @default.
- W19536506 hasAuthorship W19536506A5058725877 @default.
- W19536506 hasBestOaLocation W195365061 @default.
- W19536506 hasConcept C102519508 @default.
- W19536506 hasConcept C104267543 @default.
- W19536506 hasConcept C105795698 @default.
- W19536506 hasConcept C112972136 @default.
- W19536506 hasConcept C11413529 @default.
- W19536506 hasConcept C115961682 @default.
- W19536506 hasConcept C119857082 @default.
- W19536506 hasConcept C126255220 @default.
- W19536506 hasConcept C134306372 @default.
- W19536506 hasConcept C141379421 @default.
- W19536506 hasConcept C154945302 @default.
- W19536506 hasConcept C159694833 @default.
- W19536506 hasConcept C165838908 @default.
- W19536506 hasConcept C197413143 @default.
- W19536506 hasConcept C22789450 @default.
- W19536506 hasConcept C33923547 @default.
- W19536506 hasConcept C41008148 @default.
- W19536506 hasConcept C55020928 @default.
- W19536506 hasConcept C554190296 @default.
- W19536506 hasConcept C70958404 @default.
- W19536506 hasConcept C76155785 @default.
- W19536506 hasConcept C81184566 @default.
- W19536506 hasConceptScore W19536506C102519508 @default.
- W19536506 hasConceptScore W19536506C104267543 @default.
- W19536506 hasConceptScore W19536506C105795698 @default.
- W19536506 hasConceptScore W19536506C112972136 @default.
- W19536506 hasConceptScore W19536506C11413529 @default.
- W19536506 hasConceptScore W19536506C115961682 @default.
- W19536506 hasConceptScore W19536506C119857082 @default.
- W19536506 hasConceptScore W19536506C126255220 @default.
- W19536506 hasConceptScore W19536506C134306372 @default.
- W19536506 hasConceptScore W19536506C141379421 @default.
- W19536506 hasConceptScore W19536506C154945302 @default.
- W19536506 hasConceptScore W19536506C159694833 @default.
- W19536506 hasConceptScore W19536506C165838908 @default.
- W19536506 hasConceptScore W19536506C197413143 @default.
- W19536506 hasConceptScore W19536506C22789450 @default.
- W19536506 hasConceptScore W19536506C33923547 @default.
- W19536506 hasConceptScore W19536506C41008148 @default.
- W19536506 hasConceptScore W19536506C55020928 @default.
- W19536506 hasConceptScore W19536506C554190296 @default.
- W19536506 hasConceptScore W19536506C70958404 @default.
- W19536506 hasConceptScore W19536506C76155785 @default.