Matches in SemOpenAlex for { <https://semopenalex.org/work/W1953869306> ?p ?o ?g. }
- W1953869306 endingPage "19725" @default.
- W1953869306 startingPage "19710" @default.
- W1953869306 abstract "Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9–7.0E-3 m−1 s−1 or ∼750,000–1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes. Aminoacyl-tRNA synthetases (aaRS) catalyze both chemical steps that translate the universal genetic code. Rodin and Ohno offered an explanation for the existence of two aaRS classes, observing that codons for the most highly conserved Class I active-site residues are anticodons for corresponding Class II active-site residues. They proposed that the two classes arose simultaneously, by translation of opposite strands from the same gene. We have characterized wild-type 46-residue peptides containing ATP-binding sites of Class I and II synthetases and those coded by a gene designed by Rosetta to encode the corresponding peptides on opposite strands. Catalysis by WT and designed peptides is saturable, and the designed peptides are sensitive to active-site residue mutation. All have comparable apparent second-order rate constants 2.9–7.0E-3 m−1 s−1 or ∼750,000–1,300,000 times the uncatalyzed rate. The activities of the two complementary peptides demonstrate that the unique information in a gene can have two functional interpretations, one from each complementary strand. The peptides contain phylogenetic signatures of longer, more sophisticated catalysts we call Urzymes and are short enough to bridge the gap between them and simpler uncoded peptides. Thus, they directly substantiate the sense/antisense coding ancestry of Class I and II aaRS. Furthermore, designed 46-mers achieve similar catalytic proficiency to wild-type 46-mers by significant increases in both kcat and Km values, supporting suggestions that the earliest peptide catalysts activated ATP for biosynthetic purposes." @default.
- W1953869306 created "2016-06-24" @default.
- W1953869306 creator A5004364058 @default.
- W1953869306 creator A5009093641 @default.
- W1953869306 creator A5013989048 @default.
- W1953869306 creator A5027475930 @default.
- W1953869306 creator A5027794554 @default.
- W1953869306 creator A5031902467 @default.
- W1953869306 creator A5036425402 @default.
- W1953869306 creator A5058629016 @default.
- W1953869306 creator A5064673643 @default.
- W1953869306 creator A5064957654 @default.
- W1953869306 creator A5065695313 @default.
- W1953869306 creator A5076099368 @default.
- W1953869306 date "2015-08-01" @default.
- W1953869306 modified "2023-10-16" @default.
- W1953869306 title "Functional Class I and II Amino Acid-activating Enzymes Can Be Coded by Opposite Strands of the Same Gene" @default.
- W1953869306 cites W1588850198 @default.
- W1953869306 cites W1950941644 @default.
- W1953869306 cites W1965528417 @default.
- W1953869306 cites W1966591093 @default.
- W1953869306 cites W1969644422 @default.
- W1953869306 cites W1971340822 @default.
- W1953869306 cites W1971743171 @default.
- W1953869306 cites W1972136966 @default.
- W1953869306 cites W1975167111 @default.
- W1953869306 cites W1981095470 @default.
- W1953869306 cites W1981529363 @default.
- W1953869306 cites W1982190126 @default.
- W1953869306 cites W1982252348 @default.
- W1953869306 cites W1993174731 @default.
- W1953869306 cites W1996613940 @default.
- W1953869306 cites W2009233222 @default.
- W1953869306 cites W2009492463 @default.
- W1953869306 cites W2022605548 @default.
- W1953869306 cites W2023332924 @default.
- W1953869306 cites W2024152572 @default.
- W1953869306 cites W2025146643 @default.
- W1953869306 cites W2025936024 @default.
- W1953869306 cites W2027063313 @default.
- W1953869306 cites W2028904598 @default.
- W1953869306 cites W2029675020 @default.
- W1953869306 cites W2034271244 @default.
- W1953869306 cites W2034383320 @default.
- W1953869306 cites W2038905727 @default.
- W1953869306 cites W2041074318 @default.
- W1953869306 cites W2045875106 @default.
- W1953869306 cites W2046994420 @default.
- W1953869306 cites W2051896677 @default.
- W1953869306 cites W2057330096 @default.
- W1953869306 cites W2057481603 @default.
- W1953869306 cites W2058798560 @default.
- W1953869306 cites W2062760517 @default.
- W1953869306 cites W2064942594 @default.
- W1953869306 cites W2071933176 @default.
- W1953869306 cites W2077167882 @default.
- W1953869306 cites W2085949071 @default.
- W1953869306 cites W2085988153 @default.
- W1953869306 cites W2086494981 @default.
- W1953869306 cites W2089827651 @default.
- W1953869306 cites W2120809855 @default.
- W1953869306 cites W2133033225 @default.
- W1953869306 cites W2142287217 @default.
- W1953869306 cites W2149146343 @default.
- W1953869306 cites W2150300758 @default.
- W1953869306 cites W2158266834 @default.
- W1953869306 cites W2161954536 @default.
- W1953869306 cites W2164123092 @default.
- W1953869306 cites W2167262379 @default.
- W1953869306 cites W2169239268 @default.
- W1953869306 cites W30186236 @default.
- W1953869306 cites W4302777425 @default.
- W1953869306 doi "https://doi.org/10.1074/jbc.m115.642876" @default.
- W1953869306 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5095434" @default.
- W1953869306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27815453" @default.
- W1953869306 hasPublicationYear "2015" @default.
- W1953869306 type Work @default.
- W1953869306 sameAs 1953869306 @default.
- W1953869306 citedByCount "61" @default.
- W1953869306 countsByYear W19538693062015 @default.
- W1953869306 countsByYear W19538693062016 @default.
- W1953869306 countsByYear W19538693062017 @default.
- W1953869306 countsByYear W19538693062018 @default.
- W1953869306 countsByYear W19538693062019 @default.
- W1953869306 countsByYear W19538693062020 @default.
- W1953869306 countsByYear W19538693062021 @default.
- W1953869306 countsByYear W19538693062022 @default.
- W1953869306 countsByYear W19538693062023 @default.
- W1953869306 crossrefType "journal-article" @default.
- W1953869306 hasAuthorship W1953869306A5004364058 @default.
- W1953869306 hasAuthorship W1953869306A5009093641 @default.
- W1953869306 hasAuthorship W1953869306A5013989048 @default.
- W1953869306 hasAuthorship W1953869306A5027475930 @default.
- W1953869306 hasAuthorship W1953869306A5027794554 @default.
- W1953869306 hasAuthorship W1953869306A5031902467 @default.
- W1953869306 hasAuthorship W1953869306A5036425402 @default.
- W1953869306 hasAuthorship W1953869306A5058629016 @default.
- W1953869306 hasAuthorship W1953869306A5064673643 @default.