Matches in SemOpenAlex for { <https://semopenalex.org/work/W1953928162> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1953928162 endingPage "63" @default.
- W1953928162 startingPage "59" @default.
- W1953928162 abstract "Self-organizing maps generated by Kohonen neural networks provide a method to transform multidimensional problems common in ampelography into lower dimensional problems. In this study the clustering efficiency of Kohonen neural networks was evaluated to characterize and identify 10 Sangiovese-related and 10 coloured (fruit gives intense red colour to the wine) grapevine accessions, on the basis of the elliptic Fourier coefficients of the leaves. The non-supervised learning algorithm used allowed apriori classification of the accessions. The results enabled us to distinguish between 16 accessions and to denote two pairs of synonyms, To obtain quantitative information regarding relationships among these accessions, Kohonen neural networks were trained with different numbers of neurons in the Kohonen output layer permitting the graphical representation of the similarity by construction of a dendrogram. In agreement with previous studies based on molecular markers and neural network technology, a high similarity was found for the ecotypes (1) Prugnolo acerbo, Prugnolo dolce and Prugnolo medio and (2) Brunelletto and Prugnolo gentile. Among the Sangiovese-related accessions the so-called Casentino ecotype diverged from all the others, probably indicating a different origin. Producing easily comprehensible low-dimensional maps, the Kohonen neural networks approach proposed here allows to study complex ampelographic data elucidating relationships that can not be detected by traditional data analysis tools." @default.
- W1953928162 created "2016-06-24" @default.
- W1953928162 creator A5055043569 @default.
- W1953928162 date "2015-04-30" @default.
- W1953928162 modified "2023-09-23" @default.
- W1953928162 title "Clustering of grapevine ( Vitis vinifera L.) genotypes with Kohonen neural networks" @default.
- W1953928162 cites W1563636823 @default.
- W1953928162 cites W1991848143 @default.
- W1953928162 cites W2033791671 @default.
- W1953928162 cites W2038536621 @default.
- W1953928162 cites W2056401886 @default.
- W1953928162 cites W2089711471 @default.
- W1953928162 cites W2141366001 @default.
- W1953928162 cites W2183348570 @default.
- W1953928162 cites W2333370630 @default.
- W1953928162 cites W2397050907 @default.
- W1953928162 cites W2521728801 @default.
- W1953928162 doi "https://doi.org/10.5073/vitis.2001.40.59-63" @default.
- W1953928162 hasPublicationYear "2015" @default.
- W1953928162 type Work @default.
- W1953928162 sameAs 1953928162 @default.
- W1953928162 citedByCount "5" @default.
- W1953928162 countsByYear W19539281622015 @default.
- W1953928162 countsByYear W19539281622020 @default.
- W1953928162 crossrefType "journal-article" @default.
- W1953928162 hasAuthorship W1953928162A5055043569 @default.
- W1953928162 hasConcept C103278499 @default.
- W1953928162 hasConcept C10860467 @default.
- W1953928162 hasConcept C111168008 @default.
- W1953928162 hasConcept C115961682 @default.
- W1953928162 hasConcept C144024400 @default.
- W1953928162 hasConcept C149923435 @default.
- W1953928162 hasConcept C153180895 @default.
- W1953928162 hasConcept C154945302 @default.
- W1953928162 hasConcept C172312944 @default.
- W1953928162 hasConcept C2908647359 @default.
- W1953928162 hasConcept C2992143071 @default.
- W1953928162 hasConcept C41008148 @default.
- W1953928162 hasConcept C50644808 @default.
- W1953928162 hasConcept C59822182 @default.
- W1953928162 hasConcept C73555534 @default.
- W1953928162 hasConcept C81977670 @default.
- W1953928162 hasConcept C86803240 @default.
- W1953928162 hasConceptScore W1953928162C103278499 @default.
- W1953928162 hasConceptScore W1953928162C10860467 @default.
- W1953928162 hasConceptScore W1953928162C111168008 @default.
- W1953928162 hasConceptScore W1953928162C115961682 @default.
- W1953928162 hasConceptScore W1953928162C144024400 @default.
- W1953928162 hasConceptScore W1953928162C149923435 @default.
- W1953928162 hasConceptScore W1953928162C153180895 @default.
- W1953928162 hasConceptScore W1953928162C154945302 @default.
- W1953928162 hasConceptScore W1953928162C172312944 @default.
- W1953928162 hasConceptScore W1953928162C2908647359 @default.
- W1953928162 hasConceptScore W1953928162C2992143071 @default.
- W1953928162 hasConceptScore W1953928162C41008148 @default.
- W1953928162 hasConceptScore W1953928162C50644808 @default.
- W1953928162 hasConceptScore W1953928162C59822182 @default.
- W1953928162 hasConceptScore W1953928162C73555534 @default.
- W1953928162 hasConceptScore W1953928162C81977670 @default.
- W1953928162 hasConceptScore W1953928162C86803240 @default.
- W1953928162 hasIssue "2" @default.
- W1953928162 hasLocation W19539281621 @default.
- W1953928162 hasOpenAccess W1953928162 @default.
- W1953928162 hasPrimaryLocation W19539281621 @default.
- W1953928162 hasRelatedWork W1526580698 @default.
- W1953928162 hasRelatedWork W1530133196 @default.
- W1953928162 hasRelatedWork W1971468444 @default.
- W1953928162 hasRelatedWork W1986232961 @default.
- W1953928162 hasRelatedWork W1990038166 @default.
- W1953928162 hasRelatedWork W1992481322 @default.
- W1953928162 hasRelatedWork W2066150868 @default.
- W1953928162 hasRelatedWork W2119495943 @default.
- W1953928162 hasRelatedWork W2127554651 @default.
- W1953928162 hasRelatedWork W2144539150 @default.
- W1953928162 hasRelatedWork W2275783991 @default.
- W1953928162 hasRelatedWork W2307713471 @default.
- W1953928162 hasRelatedWork W2382717869 @default.
- W1953928162 hasRelatedWork W2596311968 @default.
- W1953928162 hasVolume "40" @default.
- W1953928162 isParatext "false" @default.
- W1953928162 isRetracted "false" @default.
- W1953928162 magId "1953928162" @default.
- W1953928162 workType "article" @default.