Matches in SemOpenAlex for { <https://semopenalex.org/work/W1958993314> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W1958993314 endingPage "301" @default.
- W1958993314 startingPage "300" @default.
- W1958993314 abstract "HomeCirculationVol. 132, No. 4Myocardial 3-Dimensional Printing for Septal Myectomy Guidance in a Patient With Obstructive Hypertrophic Cardiomyopathy Free AccessResearch ArticlePDF/EPUBAboutView PDFView EPUBSections ToolsAdd to favoritesDownload citationsTrack citationsPermissions ShareShare onFacebookTwitterLinked InMendeleyReddit Jump toFree AccessResearch ArticlePDF/EPUBMyocardial 3-Dimensional Printing for Septal Myectomy Guidance in a Patient With Obstructive Hypertrophic Cardiomyopathy Dong Hyun Yang, MD, PhD, Joon-Won Kang, MD, PhD, Namkug Kim, PhD, Jae-Kwan Song, MD, PhD, Jae-Won Lee, MD, PhD and Tae-Hwan Lim, MD, PhD Dong Hyun YangDong Hyun Yang From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author , Joon-Won KangJoon-Won Kang From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author , Namkug KimNamkug Kim From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author , Jae-Kwan SongJae-Kwan Song From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author , Jae-Won LeeJae-Won Lee From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author and Tae-Hwan LimTae-Hwan Lim From Department of Radiology and Research Institute of Radiology (D.H.Y., J-W.K., N.K., T.-H.L.), Division of Cardiology (J.-K.S.), Department of Convergence Medicine (N.K.), and Department of Cardiovascular Surgery (J.-W.L.), Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea. Search for more papers by this author Originally published28 Jul 2015https://doi.org/10.1161/CIRCULATIONAHA.115.015842Circulation. 2015;132:300–301A 33-year-old woman who reported syncope and dyspnea on exertion was diagnosed with hypertrophic cardiomyopathy and scheduled to undergo surgical septal myectomy to relieve a severe obstruction in the left ventricular (LV) outflow tract. On transthoracic echocardiography, asymmetrical septal hypertrophy and systolic anterior motion of the mitral leaflet were noted, and the peak velocity in the LV outflow tract was 4.4 m/s. Cardiac computed tomography (CT) was performed to evaluate geometric changes in the LV myocardium and coronary artery disease. A CT 3-chamber view (Figure A) and a color-coded myocardial thickness map (Figure B) generated by CT data showed asymmetrical thickening of the LV myocardium that predominantly involved the ventricular septum and had a maximal thickness of 26 mm.Download figureDownload PowerPointFigure. A, A cardiac CT 3-chamber view shows a hypertrophied interventricular septum (asterisks), posterior papillary muscle (P), and intraventricular muscle band or accessory papillary muscles (arrowhead). B, A bull’s-eye map generated by using the end-diastolic phase of the CT imaging shows the extent of the hypertrophied myocardium (red area, >15 mm in thickness). An onscreen 3D model (C) and a 3D-printed model of the myocardium (D through F) show the geometric relationship among the hypertrophied septum (asterisks), papillary muscle (A, anterior; P, posterior), and intraventricular muscle band (asterisks). Intraoperative photography (G) via the apical approach shows the limited visual field of the LV cavity. The base of the anterior papillary muscle is exposed after excision of the muscle band (not shown) near the anterior papillary muscle. AO indicates aorta; LA, left atrium; LV, left ventricle; and MV, mitral valve.For better visualization of LV anatomy and to improve surgical planning, 3-dimensional (3D) printing of the heart was performed by using the cardiac CT data. A stereolithography file of a myocardial 3D model (Figure C) was generated by dedicated software (A-view Cardiac; Asan Medical Center, Seoul, Korea) and transferred to a 3D printer system (Objet 500 Connex3; Stratasys, Minnesota, MN). The LV myocardium, papillary muscle, and intraventricular muscle band, including accessory papillary muscle, were generated with different colors by using rubberlike, transparent, and flexible materials (Tango Series; Stratasys; Figure D through F). The 3D printing enabled visualization of the geometric relationship among the hypertrophied myocardium, papillary muscle, intraventricular muscle band, and mitral annulus. For myectomy planning, the surgeon could handle and disassemble the myocardial 3D model (Movie I in the online-only Data Supplement). Extended septal myectomy was performed via an apical incision into the left ventricle (Figure G), and the hypertrophied septum and prominent muscle band were excised. Papillary muscle splitting with mitral valvuloplasty was performed to resolve the systolic anterior motion of the mitral valve. In a follow-up echocardiography obtained 4 days after surgery, the peak velocity of the LV outflow tract had decreased to 1.9 m/s.Surgical myectomy is required in hypertrophic cardiomyopathy patients with severe disabling symptoms because of LV outflow obstruction.1 Although surgical myectomy performed in experienced centers shows low mortality in hypertrophic cardiomyopathy patients, a complex LV outflow tract anatomy, combined anomalies of the papillary muscle, and limited visualization of the LV cavity in the surgical field may increase the risk and technical challenge of the surgery.1 Although 3D printing of the heart has been used for surgical planning in patients with complex congenital heart disease, cardiac tumor, and LV aneurysm,2,3 the use of 3D printing is poorly established in hypertrophic cardiomyopathy patients. In our patient, the 3D printed model generated from cardiac CT provided intuitive information on the LV geometry, including the extent of the hypertrophied septum, location and length of the papillary muscle, and intraventricular muscle band, allowing preoperative simulation of the surgical myectomy.Sources of FundingThis research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2013R1A1A1058711).DisclosuresNone.FootnotesThe online-only Data Supplement is available with this article at http://circ.ahajournals.org/lookup/suppl/doi:10.1161/CIRCULATIONAHA.115.015842/-/DC1.Correspondence to Dong Hyun Yang, MD, PhD, Assistant Professor, Department of Radiology and Research Institute of Radiology, Cardiac Imaging Center, Asan Medical Center, University of Ulsan College of Medicine, Asanbyeongwon-gil 86, Seoul 138-736, South Korea. E-mail [email protected]References1. Maron BJ, Yacoub M, Dearani JAControversies in cardiovascular medicine. Benefits of surgery in obstructive hypertrophic cardiomyopathy: bring septal myectomy back for European patients.Eur Heart J. 2011; 32:1055–1058. doi: 10.1093/eurheartj/ehr006.CrossrefMedlineGoogle Scholar2. Ryan JR, Moe TG, Richardson R, Frakes DH, Nigro JJ, Pophal SA novel approach to neonatal management of tetralogy of Fallot, with pulmonary atresia, and multiple aortopulmonary collaterals.JACC Cardiovasc Imaging. 2015; 8:103–104. doi: 10.1016/j.jcmg.2014.04.030.CrossrefMedlineGoogle Scholar3. Jacobs S, Grunert R, Mohr FW, Falk V3D-Imaging of cardiac structures using 3D heart models for planning in heart surgery: a preliminary study.Interact Cardiovasc Thorac Surg. 2008; 7:6–9. doi: 10.1510/icvts.2007.156588.CrossrefMedlineGoogle Scholar Previous Back to top Next FiguresReferencesRelatedDetailsCited By Bernhard B, Illi J, Gloeckler M, Pilgrim T, Praz F, Windecker S, Haeberlin A and Gräni C (2022) Imaging-Based, Patient-Specific Three-Dimensional Printing to Plan, Train, and Guide Cardiovascular Interventions: A Systematic Review and Meta-Analysis, Heart, Lung and Circulation, 10.1016/j.hlc.2022.04.052, Online publication date: 1-Jun-2022. Krauel L, Valls-Esteve A, Tejo-Otero A and Fenollosa-Artés F (2021) 3D-Printing in surgery: Beyond bone structures. A review, Annals of 3D Printed Medicine, 10.1016/j.stlm.2021.100039, 4, (100039), Online publication date: 1-Dec-2021. Kim W, Lim M, Jang Y, Koo H, Kang J, Jung S and Yang D (2021) Novel Resectable Myocardial Model Using Hybrid Three-Dimensional Printing and Silicone Molding for Mock Myectomy for Apical Hypertrophic Cardiomyopathy, Korean Journal of Radiology, 10.3348/kjr.2020.1164, 22:7, (1054), . Ma Y, Liu L, Yuan L and Lee A (2021) 3D Printing of Cardiomyopathy Cardiovascular 3D Printing, 10.1007/978-981-15-6957-9_10, (139-143), . Kitaoka H, Tsutsui H, Kubo T, Ide T, Chikamori T, Fukuda K, Fujino N, Higo T, Isobe M, Kamiya C, Kato S, Kihara Y, Kinugawa K, Kinugawa S, Kogaki S, Komuro I, Hagiwara N, Ono M, Maekawa Y, Makita S, Matsui Y, Matsushima S, Sakata Y, Sawa Y, Shimizu W, Teraoka K, Tsuchihashi-Makaya M, Ishibashi-Ueda H, Watanabe M, Yoshimura M, Fukusima A, Hida S, Hikoso S, Imamura T, Ishida H, Kawai M, Kitagawa T, Kohno T, Kurisu S, Nagata Y, Nakamura M, Morita H, Takano H, Shiga T, Takei Y, Yuasa S, Yamamoto T, Watanabe T, Akasaka T, Doi Y, Kimura T, Kitakaze M, Kosuge M, Takayama M and Tomoike H (2021) JCS/JHFS 2018 Guideline on the Diagnosis and Treatment of Cardiomyopathies, Circulation Journal, 10.1253/circj.CJ-20-0910, 85:9, (1590-1689), Online publication date: 25-Aug-2021. Ji Q, Wang Y, Yang Y, Lai H, Ding W, Xia L and Wang C (2021) Mini-invasive surgical instruments in transaortic myectomy for hypertrophic obstructive cardiomyopathy: a single-center experience with 168 cases, Journal of Cardiothoracic Surgery, 10.1186/s13019-021-01403-3, 16:1, Online publication date: 1-Dec-2021. Henn M and Mokadam N (2021) Three-dimensional printing to plan intracardiac operations, JTCVS Techniques, 10.1016/j.xjtc.2021.02.050, 9, (101-108), Online publication date: 1-Oct-2021. Stühlinger M, Weltermann A, Staber P, Heintel D, Nösslinger T and Steurer M (2019) Recommendations for ibrutinib treatment in patients with atrial fibrillation and/or elevated cardiovascular riskEmpfehlungen für die Behandlung mit Ibrutinib bei Patienten mit Vorhofflimmern und/oder erhöhtem kardiovaskulärem Risiko, Wiener klinische Wochenschrift, 10.1007/s00508-019-1534-1, 132:3-4, (97-109), Online publication date: 1-Feb-2020. Tejo-Otero A, Buj-Corral I and Fenollosa-Artés F (2019) 3D Printing in Medicine for Preoperative Surgical Planning: A Review, Annals of Biomedical Engineering, 10.1007/s10439-019-02411-0, 48:2, (536-555), Online publication date: 1-Feb-2020. Anastasiadis K and Tagarakis G (2020) 3D printing in cardiac surgery 3D Printing: Applications in Medicine and Surgery, 10.1016/B978-0-323-66164-5.00008-8, (117-123), . Xu C, Wang F, Chen Y, Xie S, Sng D, Reversade B and Yang T (2020) ELABELA antagonizes intrarenal renin-angiotensin system to lower blood pressure and protects against renal injury, American Journal of Physiology-Renal Physiology, 10.1152/ajprenal.00606.2019, 318:5, (F1122-F1135), Online publication date: 1-May-2020. Radzi S, Tan H, Tan G, Yeong W, Ferenczi M, Low-Beer N and Mogali S (2020) Development of a three-dimensional printed heart from computed tomography images of a plastinated specimen for learning anatomy, Anatomy & Cell Biology, 10.5115/acb.19.153, 53:1, (48-57), Online publication date: 1-Mar-2020. Ali A, Ballard D, Althobaity W, Christensen A, Geritano M, Ho M, Liacouras P, Matsumoto J, Morris J, Ryan J, Shorti R, Wake N, Rybicki F and Sheikh A (2020) Clinical situations for which 3D printing is considered an appropriate representation or extension of data contained in a medical imaging examination: adult cardiac conditions, 3D Printing in Medicine, 10.1186/s41205-020-00078-1, 6:1, Online publication date: 1-Dec-2020. Giannopoulos A, Buechel R, Ouda A and Mitsouras D (2020) Is There Role for 3D Modeling in Planning Acquired Heart Disease Surgery? 3-Dimensional Modeling in Cardiovascular Disease, 10.1016/B978-0-323-65391-6.00006-5, (75-86), . Valverde I (2020) Does 3D Modeling Alter Clinical Outcomes? What Are the Data? 3-Dimensional Modeling in Cardiovascular Disease, 10.1016/B978-0-323-65391-6.00010-7, (123-146), . Forte M, Hussain T, Roest A, Gomez G, Jongbloed M, Simpson J, Pushparajah K, Byrne N and Valverde I (2019) Living the heart in three dimensions: applications of 3D printing in CHD, Cardiology in the Young, 10.1017/S1047951119000398, 29:6, (733-743), Online publication date: 1-Jun-2019. Riedle H, Braunias K, Mukai B and Franke J (2019) Experimental Mechanical Examination of Artificial 3D Printed and Post Processed Vascular Silicone Models 2019 41st Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 10.1109/EMBC.2019.8856888, 978-1-5386-1311-5, (2860-2866) Farooqi K, Cooper C, Chelliah A, Saeed O, Chai P, Jambawalikar S, Lipson H, Bacha E, Einstein A and Jorde U (2019) 3D Printing and Heart Failure, JACC: Heart Failure, 10.1016/j.jchf.2018.09.011, 7:2, (132-142), Online publication date: 1-Feb-2019. Uccheddu F, Carfagni M, Governi L, Furferi R, Volpe Y and Nocerino E (2017) 3D printing of cardiac structures from medical images: an overview of methods and interactive tools, International Journal on Interactive Design and Manufacturing (IJIDeM), 10.1007/s12008-017-0415-y, 12:2, (597-609), Online publication date: 1-May-2018. Farooqi K and Mahmood F (2018) Innovations in Preoperative Planning: Insights into Another Dimension Using 3D Printing for Cardiac Disease, Journal of Cardiothoracic and Vascular Anesthesia, 10.1053/j.jvca.2017.11.037, 32:4, (1937-1945), Online publication date: 1-Aug-2018. El Sabbagh A, Eleid M, Al-Hijji M, Anavekar N, Holmes D, Nkomo V, Oderich G, Cassivi S, Said S, Rihal C, Matsumoto J and Foley T (2018) The Various Applications of 3D Printing in Cardiovascular Diseases, Current Cardiology Reports, 10.1007/s11886-018-0992-9, 20:6, Online publication date: 1-Jun-2018. Yang D, Park S, Lee K, Kim T, Kim J, Yun T, Kim G and Kim N (2018) Applications of Three-Dimensional Printing in Cardiovascular Surgery: A Case-Based Review, Cardiovascular Imaging Asia, 10.22468/cvia.2018.00199, 2:4, (166), . Riedle H, Molz P and Franke J (2018) Determination of the Mechanical Properties of Cardiac Tissue for 3D Printed Surgical Models 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 10.1109/IECBES.2018.8626728, 978-1-5386-2471-5, (171-176) Riedle H, Mukai B, Molz P and Franke J (2018) Determination of the Mechanical Properties of Aortic Tissue for 3D Printed Surgical Models 2018 11th Biomedical Engineering International Conference (BMEiCON), 10.1109/BMEiCON.2018.8609983, 978-1-5386-5724-9, (1-5) Harb S, Griffin B and Rodriguez L (2018) Simulation of Percutaneous Structural Interventions 3D Printing Applications in Cardiovascular Medicine, 10.1016/B978-0-12-803917-5.00007-9, (141-152), . Riedle H, Seitz V, Schraudolf L and Franke J (2018) Generation of 3D Silicone Models of Anatomic Soft Tissue Structures - A Comparison of Direct 3D Printing and Molding Techniques 2018 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), 10.1109/IECBES.2018.8626687, 978-1-5386-2471-5, (539-543) Haleem A, Javaid M and Saxena A (2018) Additive manufacturing applications in cardiology: A review, The Egyptian Heart Journal, 10.1016/j.ehj.2018.09.008, 70:4, (433-441), Online publication date: 1-Dec-2018. Bartel T, Rivard A, Jimenez A, Mestres C and Müller S (2017) Medical three-dimensional printing opens up new opportunities in cardiology and cardiac surgery, European Heart Journal, 10.1093/eurheartj/ehx016, 39:15, (1246-1254), Online publication date: 14-Apr-2018. Andrushchuk U, Adzintsou V, Nevyglas A and Model H (2017) Virtual and real septal myectomy using 3-dimensional printed models, Interactive CardioVascular and Thoracic Surgery, 10.1093/icvts/ivx410, 26:5, (881-882), Online publication date: 1-May-2018. Wang J, Coles-Black J, Matalanis G and Chuen J (2018) Innovations in cardiac surgery: techniques and applications of 3D printing, Journal of 3D Printing in Medicine, 10.2217/3dp-2018-0013, 2:4, (179-186), Online publication date: 1-Dec-2018. Shin J and Truong Q (2018) Manufacturing Better Outcomes in Cardiovascular Intervention: 3D Printing in Clinical Practice Today, Current Treatment Options in Cardiovascular Medicine, 10.1007/s11936-018-0692-1, 20:12, Online publication date: 1-Dec-2018. Song Y, Yang D, Ó Hartaigh B, Cho S, Kang J, Kim Y, Kim J, Kim D, Song J, Kang D, Song J and Lim T (2017) Geometric predictors of left ventricular outflow tract obstruction in patients with hypertrophic cardiomyopathy: a 3D computed tomography analysis, European Heart Journal - Cardiovascular Imaging, 10.1093/ehjci/jex234, 19:10, (1149-1156), Online publication date: 1-Oct-2018. Kurata A, Koyama Y, Shirakawa T and Miyoshi T (2018) Clinical Applications of Three-Dimensional Printing in Cardiovascular Disease, Cardiovascular Imaging Asia, 10.22468/cvia.2018.00094, 2:4, (153), . Mosadegh B, Amro A and Numan Y (2018) Multimaterial Cardiovascular Printing 3D Printing Applications in Cardiovascular Medicine, 10.1016/B978-0-12-803917-5.00010-9, (189-210), . Qiu K, Haghiashtiani G and McAlpine M (2018) 3D Printed Organ Models for Surgical Applications, Annual Review of Analytical Chemistry, 10.1146/annurev-anchem-061417-125935, 11:1, (287-306), Online publication date: 12-Jun-2018. Vukicevic M, Mosadegh B, Min J and Little S (2017) Cardiac 3D Printing and its Future Directions, JACC: Cardiovascular Imaging, 10.1016/j.jcmg.2016.12.001, 10:2, (171-184), Online publication date: 1-Feb-2017. Giannopoulos A, Mitsouras D, Schwarz B, Dill K and Rybicki F (2017) Cardiovascular 3D Printing 3D Printing in Medicine, 10.1007/978-3-319-61924-8_7, (59-69), . Foley T, El Sabbagh A, Anavekar N, Williamson E and Matsumoto J (2017) 3D-Printing: Applications in Cardiovascular Imaging, Current Radiology Reports, 10.1007/s40134-017-0239-3, 5:9, Online publication date: 1-Sep-2017. Anwar S, Singh G, Petrucci O, Eghtesady P, Woodard P and Billadello J (2017) Adult Congenital Heart Disease Rapid Prototyping in Cardiac Disease, 10.1007/978-3-319-53523-4_11, (99-109), . Cooper R, Raphael C, Liebregts M, Anavekar N and Veselka J (2017) New Developments in Hypertrophic Cardiomyopathy, Canadian Journal of Cardiology, 10.1016/j.cjca.2017.07.007, 33:10, (1254-1265), Online publication date: 1-Oct-2017. Hamatani Y, Amaki M, Kanzaki H, Yamashita K, Nakashima Y, Shibata A, Okada A, Takahama H, Hasegawa T, Shimahara Y, Sugano Y, Fujita T, Shiraishi I, Yasuda S, Kobayashi J and Anzai T (2017) Contrast-enhanced computed tomography with myocardial three-dimensional printing can guide treatment in symptomatic hypertrophic obstructive cardiomyopathy, ESC Heart Failure, 10.1002/ehf2.12178, 4:4, (665-669), Online publication date: 1-Nov-2017. Choi J, Kim N and Hwang C (2017) 3D Printing Technology in Craniofacial Surgery and Salivary Gland Regeneration Salivary Gland Development and Regeneration, 10.1007/978-3-319-43513-8_9, (173-191), . Kuk M, Mitsouras D, Dill K, Rybicki F and Dwivedi G (2017) 3D Printing from Cardiac Computed Tomography for Procedural Planning, Current Cardiovascular Imaging Reports, 10.1007/s12410-017-9420-6, 10:7, Online publication date: 1-Jul-2017. Valverde I (2017) Impresión tridimensional de modelos cardiacos: aplicaciones en el campo de la educación médica, la cirugía cardiaca y el intervencionismo estructural, Revista Española de Cardiología, 10.1016/j.recesp.2016.09.043, 70:4, (282-291), Online publication date: 1-Apr-2017. Valverde I (2017) Three-dimensional Printed Cardiac Models: Applications in the Field of Medical Education, Cardiovascular Surgery, and Structural Heart Interventions, Revista Española de Cardiología (English Edition), 10.1016/j.rec.2017.01.012, 70:4, (282-291), Online publication date: 1-Apr-2017. Giannopoulos A, Mitsouras D, Yoo S, Liu P, Chatzizisis Y and Rybicki F (2016) Applications of 3D printing in cardiovascular diseases, Nature Reviews Cardiology, 10.1038/nrcardio.2016.170, 13:12, (701-718), Online publication date: 1-Dec-2016. Giannopoulos A, Steigner M, George E, Barile M, Hunsaker A, Rybicki F and Mitsouras D (2016) Cardiothoracic Applications of 3-dimensional Printing, Journal of Thoracic Imaging, 10.1097/RTI.0000000000000217, 31:5, (253-272), Online publication date: 1-Sep-2016. Einstein A, Lloyd S, Chaudhry F, AlJaroudi W and Hage F (2016) Multi-modality Imaging: Bird’s eye view from the 2015 American Heart Association Scientific Sessions, Journal of Nuclear Cardiology, 10.1007/s12350-016-0404-8, 23:2, (235-243), Online publication date: 1-Apr-2016. Kim G, Lee S, Kim H, Yang D, Kim Y, Kyung Y, Kim C, Choi S, Kim B, Ha H, Kwon S and Kim N (2016) Three-Dimensional Printing: Basic Principles and Applications in Medicine and Radiology, Korean Journal of Radiology, 10.3348/kjr.2016.17.2.182, 17:2, (182), . Ferrari E, Gallo M, Wang C, Zhang L, Taramasso M, Maisano F, Pirelli L, Berdajs D and von Segesser L (2019) Three-dimensional printing in adult cardiovascular medicine for surgical and transcatheter procedural planning, teaching and technological innovation, Interactive CardioVascular and Thoracic Surgery, 10.1093/icvts/ivz250 Cernica D, Benedek I, Polexa S, Tolescu C and Benedek T (2021) 3D Printing—A Cutting Edge Technology for Treating Post-Infarction Patients, Life, 10.3390/life11090910, 11:9, (910) Bassi G, Grimaudo M, Panseri S and Montesi M (2021) Advanced Multi-Dimensional Cellular Models as Emerging Reality to Reproduce In Vitro the Human Body Complexity, International Journal of Molecular Sciences, 10.3390/ijms22031195, 22:3, (1195) Inoue M, Freel T, Van Avermaete A and Leevy W (2020) Color Enhancement Strategies for 3D Printing of X-ray Computed Tomography Bone Data for Advanced Anatomy Teaching Models, Applied Sciences, 10.3390/app10051571, 10:5, (1571) July 28, 2015Vol 132, Issue 4 Advertisement Article InformationMetrics © 2015 American Heart Association, Inc.https://doi.org/10.1161/CIRCULATIONAHA.115.015842PMID: 26216088 Originally publishedJuly 28, 2015 PDF download Advertisement SubjectsCardiovascular Surgery" @default.
- W1958993314 created "2016-06-24" @default.
- W1958993314 creator A5004642940 @default.
- W1958993314 creator A5004946653 @default.
- W1958993314 creator A5007533948 @default.
- W1958993314 creator A5041952524 @default.
- W1958993314 creator A5063541815 @default.
- W1958993314 creator A5084774857 @default.
- W1958993314 date "2015-07-28" @default.
- W1958993314 modified "2023-09-30" @default.
- W1958993314 title "Myocardial 3-Dimensional Printing for Septal Myectomy Guidance in a Patient With Obstructive Hypertrophic Cardiomyopathy" @default.
- W1958993314 cites W2010473200 @default.
- W1958993314 cites W2028547532 @default.
- W1958993314 cites W2131847114 @default.
- W1958993314 doi "https://doi.org/10.1161/circulationaha.115.015842" @default.
- W1958993314 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26216088" @default.
- W1958993314 hasPublicationYear "2015" @default.
- W1958993314 type Work @default.
- W1958993314 sameAs 1958993314 @default.
- W1958993314 citedByCount "59" @default.
- W1958993314 countsByYear W19589933142015 @default.
- W1958993314 countsByYear W19589933142016 @default.
- W1958993314 countsByYear W19589933142017 @default.
- W1958993314 countsByYear W19589933142018 @default.
- W1958993314 countsByYear W19589933142019 @default.
- W1958993314 countsByYear W19589933142020 @default.
- W1958993314 countsByYear W19589933142021 @default.
- W1958993314 countsByYear W19589933142022 @default.
- W1958993314 countsByYear W19589933142023 @default.
- W1958993314 crossrefType "journal-article" @default.
- W1958993314 hasAuthorship W1958993314A5004642940 @default.
- W1958993314 hasAuthorship W1958993314A5004946653 @default.
- W1958993314 hasAuthorship W1958993314A5007533948 @default.
- W1958993314 hasAuthorship W1958993314A5041952524 @default.
- W1958993314 hasAuthorship W1958993314A5063541815 @default.
- W1958993314 hasAuthorship W1958993314A5084774857 @default.
- W1958993314 hasBestOaLocation W19589933141 @default.
- W1958993314 hasConcept C126322002 @default.
- W1958993314 hasConcept C164705383 @default.
- W1958993314 hasConcept C2777084453 @default.
- W1958993314 hasConcept C2778198053 @default.
- W1958993314 hasConcept C2778797674 @default.
- W1958993314 hasConcept C2780185194 @default.
- W1958993314 hasConcept C2909003343 @default.
- W1958993314 hasConcept C2909253254 @default.
- W1958993314 hasConcept C71924100 @default.
- W1958993314 hasConceptScore W1958993314C126322002 @default.
- W1958993314 hasConceptScore W1958993314C164705383 @default.
- W1958993314 hasConceptScore W1958993314C2777084453 @default.
- W1958993314 hasConceptScore W1958993314C2778198053 @default.
- W1958993314 hasConceptScore W1958993314C2778797674 @default.
- W1958993314 hasConceptScore W1958993314C2780185194 @default.
- W1958993314 hasConceptScore W1958993314C2909003343 @default.
- W1958993314 hasConceptScore W1958993314C2909253254 @default.
- W1958993314 hasConceptScore W1958993314C71924100 @default.
- W1958993314 hasIssue "4" @default.
- W1958993314 hasLocation W19589933141 @default.
- W1958993314 hasLocation W19589933142 @default.
- W1958993314 hasOpenAccess W1958993314 @default.
- W1958993314 hasPrimaryLocation W19589933141 @default.
- W1958993314 hasRelatedWork W2054017810 @default.
- W1958993314 hasRelatedWork W2148407538 @default.
- W1958993314 hasRelatedWork W2165883913 @default.
- W1958993314 hasRelatedWork W2413716328 @default.
- W1958993314 hasRelatedWork W2619306473 @default.
- W1958993314 hasRelatedWork W2808472247 @default.
- W1958993314 hasRelatedWork W2981648924 @default.
- W1958993314 hasRelatedWork W3013660704 @default.
- W1958993314 hasRelatedWork W3193796930 @default.
- W1958993314 hasRelatedWork W4317358821 @default.
- W1958993314 hasVolume "132" @default.
- W1958993314 isParatext "false" @default.
- W1958993314 isRetracted "false" @default.
- W1958993314 magId "1958993314" @default.
- W1958993314 workType "article" @default.