Matches in SemOpenAlex for { <https://semopenalex.org/work/W1961037478> ?p ?o ?g. }
- W1961037478 abstract "Cognitive radio (CR) technology has emerged as a promising solution to many wireless communication problems including spectrum scarcity and underutilization. To enhance the selection of channel with less noise among the white spaces (idle channels), the a priory knowledge of Radio Frequency (RF) power is very important. Computational Intelligence (CI) techniques cans be applied to these scenarios to predict the required RF power in the available channels to achieve optimum Quality of Service (QoS). In this paper, we developed a time domain based optimized Artificial Neural Network (ANN) and Support Vector Regression (SVR) models for the prediction of real world RF power within the GSM 900, Very High Frequency (VHF) and Ultra High Frequency (UHF) FM and TV bands. Sensitivity analysis was used to reduce the input vector of the prediction models. The inputs of the ANN and SVR consist of only time domain data and past RF power without using any RF power related parameters, thus forming a nonlinear time series prediction model. The application of the models produced was found to increase the robustness of CR applications, specifically where the CR had no prior knowledge of the RF power related parameters such as signal to noise ratio, bandwidth and bit error rate. Since CR are embedded communication devices with memory constrain limitation, the models used, implemented a novel and innovative initial weight optimization of the ANN's through the use of compact differential evolutionary (cDE) algorithm variants which are memory efficient. This was found to enhance the accuracy and generalization of the ANN model." @default.
- W1961037478 created "2016-06-24" @default.
- W1961037478 creator A5011417507 @default.
- W1961037478 creator A5026652997 @default.
- W1961037478 creator A5041839610 @default.
- W1961037478 creator A5052500974 @default.
- W1961037478 creator A5056152018 @default.
- W1961037478 date "2015-10-11" @default.
- W1961037478 modified "2023-10-15" @default.
- W1961037478 title "Application of Artificial Neural Network and Support Vector Regression in Cognitive Radio Networks for RF Power Prediction Using Compact Differential Evolution Algorithm" @default.
- W1961037478 cites W1560724230 @default.
- W1961037478 cites W1597534959 @default.
- W1961037478 cites W1879678483 @default.
- W1961037478 cites W1964872307 @default.
- W1961037478 cites W1966778788 @default.
- W1961037478 cites W1971130674 @default.
- W1961037478 cites W2004785362 @default.
- W1961037478 cites W2009645864 @default.
- W1961037478 cites W2013614079 @default.
- W1961037478 cites W2015338914 @default.
- W1961037478 cites W2021191744 @default.
- W1961037478 cites W2054672448 @default.
- W1961037478 cites W2058074751 @default.
- W1961037478 cites W2073550606 @default.
- W1961037478 cites W2074190890 @default.
- W1961037478 cites W2094755917 @default.
- W1961037478 cites W2101006708 @default.
- W1961037478 cites W2126811106 @default.
- W1961037478 cites W2128010550 @default.
- W1961037478 cites W2131319142 @default.
- W1961037478 cites W2137340504 @default.
- W1961037478 cites W2142093314 @default.
- W1961037478 cites W2148379945 @default.
- W1961037478 cites W2148603752 @default.
- W1961037478 cites W2156909104 @default.
- W1961037478 cites W2158871752 @default.
- W1961037478 cites W2164402548 @default.
- W1961037478 cites W2165647999 @default.
- W1961037478 cites W2200598049 @default.
- W1961037478 cites W2323968094 @default.
- W1961037478 cites W1857789879 @default.
- W1961037478 cites W2312316559 @default.
- W1961037478 doi "https://doi.org/10.15439/2015f14" @default.
- W1961037478 hasPublicationYear "2015" @default.
- W1961037478 type Work @default.
- W1961037478 sameAs 1961037478 @default.
- W1961037478 citedByCount "12" @default.
- W1961037478 countsByYear W19610374782016 @default.
- W1961037478 countsByYear W19610374782017 @default.
- W1961037478 countsByYear W19610374782018 @default.
- W1961037478 countsByYear W19610374782020 @default.
- W1961037478 countsByYear W19610374782023 @default.
- W1961037478 crossrefType "proceedings-article" @default.
- W1961037478 hasAuthorship W1961037478A5011417507 @default.
- W1961037478 hasAuthorship W1961037478A5026652997 @default.
- W1961037478 hasAuthorship W1961037478A5041839610 @default.
- W1961037478 hasAuthorship W1961037478A5052500974 @default.
- W1961037478 hasAuthorship W1961037478A5056152018 @default.
- W1961037478 hasBestOaLocation W19610374781 @default.
- W1961037478 hasConcept C105795698 @default.
- W1961037478 hasConcept C11413529 @default.
- W1961037478 hasConcept C119857082 @default.
- W1961037478 hasConcept C121332964 @default.
- W1961037478 hasConcept C12267149 @default.
- W1961037478 hasConcept C127413603 @default.
- W1961037478 hasConcept C146978453 @default.
- W1961037478 hasConcept C149946192 @default.
- W1961037478 hasConcept C153180895 @default.
- W1961037478 hasConcept C154945302 @default.
- W1961037478 hasConcept C163258240 @default.
- W1961037478 hasConcept C33923547 @default.
- W1961037478 hasConcept C41008148 @default.
- W1961037478 hasConcept C50644808 @default.
- W1961037478 hasConcept C555944384 @default.
- W1961037478 hasConcept C62520636 @default.
- W1961037478 hasConcept C74064498 @default.
- W1961037478 hasConcept C74750220 @default.
- W1961037478 hasConcept C76155785 @default.
- W1961037478 hasConcept C83546350 @default.
- W1961037478 hasConcept C93226319 @default.
- W1961037478 hasConceptScore W1961037478C105795698 @default.
- W1961037478 hasConceptScore W1961037478C11413529 @default.
- W1961037478 hasConceptScore W1961037478C119857082 @default.
- W1961037478 hasConceptScore W1961037478C121332964 @default.
- W1961037478 hasConceptScore W1961037478C12267149 @default.
- W1961037478 hasConceptScore W1961037478C127413603 @default.
- W1961037478 hasConceptScore W1961037478C146978453 @default.
- W1961037478 hasConceptScore W1961037478C149946192 @default.
- W1961037478 hasConceptScore W1961037478C153180895 @default.
- W1961037478 hasConceptScore W1961037478C154945302 @default.
- W1961037478 hasConceptScore W1961037478C163258240 @default.
- W1961037478 hasConceptScore W1961037478C33923547 @default.
- W1961037478 hasConceptScore W1961037478C41008148 @default.
- W1961037478 hasConceptScore W1961037478C50644808 @default.
- W1961037478 hasConceptScore W1961037478C555944384 @default.
- W1961037478 hasConceptScore W1961037478C62520636 @default.
- W1961037478 hasConceptScore W1961037478C74064498 @default.
- W1961037478 hasConceptScore W1961037478C74750220 @default.
- W1961037478 hasConceptScore W1961037478C76155785 @default.
- W1961037478 hasConceptScore W1961037478C83546350 @default.