Matches in SemOpenAlex for { <https://semopenalex.org/work/W196127575> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W196127575 endingPage "171" @default.
- W196127575 startingPage "159" @default.
- W196127575 abstract "Given an edge-weighted directed graph $$G=(V,E)$$ on $$n$$ vertices and a set $$T={t_1, t_2, ldots t_p}$$ of $$p$$ terminals, the objective of the Strongly Connected Steiner Subgraph (SCSS) problem is to find an edge set $$Hsubseteq E$$ of minimum weight such that $$G[H]$$ contains a $$t_{i}rightarrow t_j$$ path for each $$1le ine jle p$$ . The problem is NP-hard, but Feldman and Ruhl [FOCS ’99; SICOMP ’06] gave a novel $$n^{O(p)}$$ algorithm for the $$p$$ -SCSS problem. In this paper, we investigate the computational complexity of a variant of $$2$$ -SCSS where we have demands for the number of paths between each terminal pair. Formally, the $$2$$ -SCSS- $$(k_1, k_2)$$ problem is defined as follows: given an edge-weighted directed graph $$G=(V,E)$$ with weight function $$omega : Erightarrow mathbb {R}_{ge 0}$$ , two terminal vertices $$s, t$$ , and integers $$k_1, k_2$$ ; the objective is to find a set of $$k_1$$ paths $$F_1, F_2, ldots , F_{k_1}$$ from $$sleadsto t$$ and $$k_2$$ paths $$B_1, B_2, ldots , B_{k_2}$$ from $$tleadsto s$$ such that $$sum _{ein E} omega (e)cdot phi (e)$$ is minimized, where $$phi (e)= max Big {|{i : iin [k_1], ein F_i}| ; |{j : jin [k_2], ein B_j}|Big }$$ . For each $$kge 1$$ , we show the following: Our algorithm for $$2$$ -SCSS- $$(k,1)$$ relies on a structural result regarding the optimal solution followed by using the idea of a “token game similar to that of Feldman and Ruhl. We show with an example that the structural result does not hold for the $$2$$ -SCSS- $$(k_1, k_2)$$ problem if $$min {k_1, k_2}ge 2$$ . Therefore $$2$$ -SCSS- $$(k,1)$$ is the most general problem one can attempt to solve with our techniques. To obtain the lower bound matching the algorithm, we reduce from a special variant of the Grid Tiling problem introduced by Marx [FOCS ’07; ICALP ’12]." @default.
- W196127575 created "2016-06-24" @default.
- W196127575 creator A5012330722 @default.
- W196127575 creator A5047480720 @default.
- W196127575 creator A5056370891 @default.
- W196127575 creator A5074837451 @default.
- W196127575 creator A5084358000 @default.
- W196127575 creator A5087093711 @default.
- W196127575 date "2014-01-01" @default.
- W196127575 modified "2023-09-24" @default.
- W196127575 title "A Tight Algorithm for Strongly Connected Steiner Subgraph on Two Terminals with Demands (Extended Abstract)" @default.
- W196127575 cites W2009976792 @default.
- W196127575 cites W2084876869 @default.
- W196127575 cites W2123790987 @default.
- W196127575 cites W2130190334 @default.
- W196127575 cites W2143481766 @default.
- W196127575 cites W2167815360 @default.
- W196127575 cites W2295961103 @default.
- W196127575 cites W2568450825 @default.
- W196127575 cites W2989902795 @default.
- W196127575 cites W4253565129 @default.
- W196127575 cites W95416648 @default.
- W196127575 doi "https://doi.org/10.1007/978-3-319-13524-3_14" @default.
- W196127575 hasPublicationYear "2014" @default.
- W196127575 type Work @default.
- W196127575 sameAs 196127575 @default.
- W196127575 citedByCount "3" @default.
- W196127575 countsByYear W1961275752015 @default.
- W196127575 countsByYear W1961275752016 @default.
- W196127575 countsByYear W1961275752017 @default.
- W196127575 crossrefType "book-chapter" @default.
- W196127575 hasAuthorship W196127575A5012330722 @default.
- W196127575 hasAuthorship W196127575A5047480720 @default.
- W196127575 hasAuthorship W196127575A5056370891 @default.
- W196127575 hasAuthorship W196127575A5074837451 @default.
- W196127575 hasAuthorship W196127575A5084358000 @default.
- W196127575 hasAuthorship W196127575A5087093711 @default.
- W196127575 hasConcept C114614502 @default.
- W196127575 hasConcept C118615104 @default.
- W196127575 hasConcept C121332964 @default.
- W196127575 hasConcept C132525143 @default.
- W196127575 hasConcept C199360897 @default.
- W196127575 hasConcept C2777735758 @default.
- W196127575 hasConcept C2779557605 @default.
- W196127575 hasConcept C33923547 @default.
- W196127575 hasConcept C41008148 @default.
- W196127575 hasConcept C62520636 @default.
- W196127575 hasConceptScore W196127575C114614502 @default.
- W196127575 hasConceptScore W196127575C118615104 @default.
- W196127575 hasConceptScore W196127575C121332964 @default.
- W196127575 hasConceptScore W196127575C132525143 @default.
- W196127575 hasConceptScore W196127575C199360897 @default.
- W196127575 hasConceptScore W196127575C2777735758 @default.
- W196127575 hasConceptScore W196127575C2779557605 @default.
- W196127575 hasConceptScore W196127575C33923547 @default.
- W196127575 hasConceptScore W196127575C41008148 @default.
- W196127575 hasConceptScore W196127575C62520636 @default.
- W196127575 hasLocation W1961275751 @default.
- W196127575 hasOpenAccess W196127575 @default.
- W196127575 hasPrimaryLocation W1961275751 @default.
- W196127575 hasRelatedWork W1626217631 @default.
- W196127575 hasRelatedWork W1985880617 @default.
- W196127575 hasRelatedWork W2921972394 @default.
- W196127575 hasRelatedWork W2950122013 @default.
- W196127575 hasRelatedWork W2951867195 @default.
- W196127575 hasRelatedWork W2989234367 @default.
- W196127575 hasRelatedWork W3008876895 @default.
- W196127575 hasRelatedWork W3157491188 @default.
- W196127575 hasRelatedWork W4286824753 @default.
- W196127575 hasRelatedWork W4377372033 @default.
- W196127575 isParatext "false" @default.
- W196127575 isRetracted "false" @default.
- W196127575 magId "196127575" @default.
- W196127575 workType "book-chapter" @default.