Matches in SemOpenAlex for { <https://semopenalex.org/work/W1961328222> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1961328222 endingPage "694" @default.
- W1961328222 startingPage "669" @default.
- W1961328222 abstract "Furstenberg showed that if two topological systems <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper X comma upper T right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(X,T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper Y comma upper S right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(Y,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> are disjoint, then one of them, say <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper Y comma upper S right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(Y,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, is minimal. When <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper Y comma upper S right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(Y,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is nontrivial, we prove that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper X comma upper T right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(X,T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> must have dense recurrent points, and there are countably many maximal transitive subsystems of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper X comma upper T right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>X</mml:mi> <mml:mo>,</mml:mo> <mml:mi>T</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(X,T)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that their union is dense and each of them is disjoint from <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis upper Y comma upper S right-parenthesis> <mml:semantics> <mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>Y</mml:mi> <mml:mo>,</mml:mo> <mml:mi>S</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>(Y,S)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Showing that a weakly mixing system with dense periodic points is in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, the collection of all systems disjoint from any minimal system, Furstenberg asked the question to characterize the systems in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We show that a weakly mixing system with dense regular minimal points is in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and each system in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has dense minimal points and it is weakly mixing if it is transitive. Transitive systems in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and having no periodic points are constructed. Moreover, we show that there is a distal system in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=script upper M Superscript up-tack> <mml:semantics> <mml:msup> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi class=MJX-tex-caligraphic mathvariant=script>M</mml:mi> </mml:mrow> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>⊥<!-- ⊥ --></mml:mo> </mml:mrow> </mml:msup> <mml:annotation encoding=application/x-tex>{mathcal {M}}^{perp }</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Recently, Weiss showed that a system is weakly disjoint from all weakly mixing systems iff it is topologically ergodic. We construct an example which is weakly disjoint from all topologically ergodic systems and is not weakly mixing." @default.
- W1961328222 created "2016-06-24" @default.
- W1961328222 creator A5031455285 @default.
- W1961328222 creator A5037065410 @default.
- W1961328222 date "2004-04-16" @default.
- W1961328222 modified "2023-10-16" @default.
- W1961328222 title "Dynamical systems disjoint from any minimal system" @default.
- W1961328222 cites W1977376785 @default.
- W1961328222 cites W1980156365 @default.
- W1961328222 cites W1988889077 @default.
- W1961328222 cites W1995701007 @default.
- W1961328222 cites W2059735611 @default.
- W1961328222 cites W2158472010 @default.
- W1961328222 cites W4231009334 @default.
- W1961328222 cites W4237941720 @default.
- W1961328222 cites W4240495716 @default.
- W1961328222 cites W4251619642 @default.
- W1961328222 cites W4254582713 @default.
- W1961328222 cites W4255288318 @default.
- W1961328222 doi "https://doi.org/10.1090/s0002-9947-04-03540-8" @default.
- W1961328222 hasPublicationYear "2004" @default.
- W1961328222 type Work @default.
- W1961328222 sameAs 1961328222 @default.
- W1961328222 citedByCount "42" @default.
- W1961328222 countsByYear W19613282222012 @default.
- W1961328222 countsByYear W19613282222013 @default.
- W1961328222 countsByYear W19613282222014 @default.
- W1961328222 countsByYear W19613282222015 @default.
- W1961328222 countsByYear W19613282222016 @default.
- W1961328222 countsByYear W19613282222018 @default.
- W1961328222 countsByYear W19613282222019 @default.
- W1961328222 countsByYear W19613282222020 @default.
- W1961328222 countsByYear W19613282222021 @default.
- W1961328222 countsByYear W19613282222022 @default.
- W1961328222 countsByYear W19613282222023 @default.
- W1961328222 crossrefType "journal-article" @default.
- W1961328222 hasAuthorship W1961328222A5031455285 @default.
- W1961328222 hasAuthorship W1961328222A5037065410 @default.
- W1961328222 hasBestOaLocation W19613282221 @default.
- W1961328222 hasConcept C11413529 @default.
- W1961328222 hasConcept C114614502 @default.
- W1961328222 hasConcept C154945302 @default.
- W1961328222 hasConcept C2776321320 @default.
- W1961328222 hasConcept C33923547 @default.
- W1961328222 hasConcept C41008148 @default.
- W1961328222 hasConcept C45340560 @default.
- W1961328222 hasConceptScore W1961328222C11413529 @default.
- W1961328222 hasConceptScore W1961328222C114614502 @default.
- W1961328222 hasConceptScore W1961328222C154945302 @default.
- W1961328222 hasConceptScore W1961328222C2776321320 @default.
- W1961328222 hasConceptScore W1961328222C33923547 @default.
- W1961328222 hasConceptScore W1961328222C41008148 @default.
- W1961328222 hasConceptScore W1961328222C45340560 @default.
- W1961328222 hasIssue "2" @default.
- W1961328222 hasLocation W19613282221 @default.
- W1961328222 hasOpenAccess W1961328222 @default.
- W1961328222 hasPrimaryLocation W19613282221 @default.
- W1961328222 hasRelatedWork W1490908374 @default.
- W1961328222 hasRelatedWork W151193258 @default.
- W1961328222 hasRelatedWork W1529400504 @default.
- W1961328222 hasRelatedWork W1607472309 @default.
- W1961328222 hasRelatedWork W1871911958 @default.
- W1961328222 hasRelatedWork W1892467659 @default.
- W1961328222 hasRelatedWork W2808586768 @default.
- W1961328222 hasRelatedWork W2998403542 @default.
- W1961328222 hasRelatedWork W3107474891 @default.
- W1961328222 hasRelatedWork W38394648 @default.
- W1961328222 hasVolume "357" @default.
- W1961328222 isParatext "false" @default.
- W1961328222 isRetracted "false" @default.
- W1961328222 magId "1961328222" @default.
- W1961328222 workType "article" @default.