Matches in SemOpenAlex for { <https://semopenalex.org/work/W1962261421> ?p ?o ?g. }
- W1962261421 endingPage "8834" @default.
- W1962261421 startingPage "8814" @default.
- W1962261421 abstract "The determinations of heat collection rate and heat loss coefficient are crucial for the evaluation of in service water-in-glass evacuated tube solar water heaters. However, the direct determination requires complex detection devices and a series of standard experiments, which also wastes too much time and manpower. To address this problem, we propose machine learning models including artificial neural networks (ANNs) and support vector machines (SVM) to predict the heat collection rate and heat loss coefficient without a direct determination. Parameters that can be easily obtained by “portable test instruments” were set as independent variables, including tube length, number of tubes, tube center distance, heat water mass in tank, collector area, final temperature and angle between tubes and ground, while the heat collection rate and heat loss coefficient determined by the detection device were set as dependent variables respectively. Nine hundred fifteen samples from in-service water-in-glass evacuated tube solar water heaters were used for training and testing the models. Results show that the multilayer feed-forward neural network (MLFN) with 3 nodes is the best model for the prediction of heat collection rate and the general regression neural network (GRNN) is the best model for the prediction of heat loss coefficient due to their low root mean square (RMS) errors, short training times, and high prediction accuracies (under the tolerances of 30%, 20%, and 10%, respectively)." @default.
- W1962261421 created "2016-06-24" @default.
- W1962261421 creator A5000468779 @default.
- W1962261421 creator A5019560977 @default.
- W1962261421 creator A5037091907 @default.
- W1962261421 creator A5053337874 @default.
- W1962261421 creator A5073936760 @default.
- W1962261421 date "2015-08-20" @default.
- W1962261421 modified "2023-09-26" @default.
- W1962261421 title "Novel Method for Measuring the Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters Based on Artificial Neural Networks and Support Vector Machine" @default.
- W1962261421 cites W1967264575 @default.
- W1962261421 cites W1970978817 @default.
- W1962261421 cites W1976876920 @default.
- W1962261421 cites W1988071900 @default.
- W1962261421 cites W1993007926 @default.
- W1962261421 cites W1993213454 @default.
- W1962261421 cites W1997276660 @default.
- W1962261421 cites W1999159013 @default.
- W1962261421 cites W2012855858 @default.
- W1962261421 cites W2017793245 @default.
- W1962261421 cites W2019313939 @default.
- W1962261421 cites W2022962792 @default.
- W1962261421 cites W2028501442 @default.
- W1962261421 cites W2028882421 @default.
- W1962261421 cites W2031433747 @default.
- W1962261421 cites W2033193574 @default.
- W1962261421 cites W2033579269 @default.
- W1962261421 cites W2036928892 @default.
- W1962261421 cites W2037404507 @default.
- W1962261421 cites W2039487567 @default.
- W1962261421 cites W2045902970 @default.
- W1962261421 cites W2046086893 @default.
- W1962261421 cites W2052503768 @default.
- W1962261421 cites W2057936307 @default.
- W1962261421 cites W2060446666 @default.
- W1962261421 cites W2063098604 @default.
- W1962261421 cites W2071832011 @default.
- W1962261421 cites W2072178427 @default.
- W1962261421 cites W2072325947 @default.
- W1962261421 cites W2074457964 @default.
- W1962261421 cites W2080352206 @default.
- W1962261421 cites W2088874310 @default.
- W1962261421 cites W2093487140 @default.
- W1962261421 cites W2095396960 @default.
- W1962261421 cites W2104893957 @default.
- W1962261421 cites W2134319719 @default.
- W1962261421 cites W2149723649 @default.
- W1962261421 cites W2156164359 @default.
- W1962261421 cites W2169694937 @default.
- W1962261421 cites W4382140964 @default.
- W1962261421 doi "https://doi.org/10.3390/en8088814" @default.
- W1962261421 hasPublicationYear "2015" @default.
- W1962261421 type Work @default.
- W1962261421 sameAs 1962261421 @default.
- W1962261421 citedByCount "33" @default.
- W1962261421 countsByYear W19622614212015 @default.
- W1962261421 countsByYear W19622614212016 @default.
- W1962261421 countsByYear W19622614212017 @default.
- W1962261421 countsByYear W19622614212018 @default.
- W1962261421 countsByYear W19622614212019 @default.
- W1962261421 countsByYear W19622614212020 @default.
- W1962261421 countsByYear W19622614212022 @default.
- W1962261421 countsByYear W19622614212023 @default.
- W1962261421 crossrefType "journal-article" @default.
- W1962261421 hasAuthorship W1962261421A5000468779 @default.
- W1962261421 hasAuthorship W1962261421A5019560977 @default.
- W1962261421 hasAuthorship W1962261421A5037091907 @default.
- W1962261421 hasAuthorship W1962261421A5053337874 @default.
- W1962261421 hasAuthorship W1962261421A5073936760 @default.
- W1962261421 hasBestOaLocation W19622614211 @default.
- W1962261421 hasConcept C105795698 @default.
- W1962261421 hasConcept C119857082 @default.
- W1962261421 hasConcept C12267149 @default.
- W1962261421 hasConcept C127413603 @default.
- W1962261421 hasConcept C128990827 @default.
- W1962261421 hasConcept C139945424 @default.
- W1962261421 hasConcept C154945302 @default.
- W1962261421 hasConcept C33923547 @default.
- W1962261421 hasConcept C41008148 @default.
- W1962261421 hasConcept C50644808 @default.
- W1962261421 hasConcept C78519656 @default.
- W1962261421 hasConceptScore W1962261421C105795698 @default.
- W1962261421 hasConceptScore W1962261421C119857082 @default.
- W1962261421 hasConceptScore W1962261421C12267149 @default.
- W1962261421 hasConceptScore W1962261421C127413603 @default.
- W1962261421 hasConceptScore W1962261421C128990827 @default.
- W1962261421 hasConceptScore W1962261421C139945424 @default.
- W1962261421 hasConceptScore W1962261421C154945302 @default.
- W1962261421 hasConceptScore W1962261421C33923547 @default.
- W1962261421 hasConceptScore W1962261421C41008148 @default.
- W1962261421 hasConceptScore W1962261421C50644808 @default.
- W1962261421 hasConceptScore W1962261421C78519656 @default.
- W1962261421 hasIssue "8" @default.
- W1962261421 hasLocation W19622614211 @default.
- W1962261421 hasLocation W19622614212 @default.
- W1962261421 hasOpenAccess W1962261421 @default.
- W1962261421 hasPrimaryLocation W19622614211 @default.
- W1962261421 hasRelatedWork W1592972299 @default.