Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963462023> ?p ?o ?g. }
- W1963462023 endingPage "167" @default.
- W1963462023 startingPage "167" @default.
- W1963462023 abstract "Biological data are often high in dimension while the number of samples is small. In such cases, the performance of classification can be improved by reducing the dimension of data, which is referred to as feature selection. Recently, a novel feature selection method has been proposed utilising the sparsity of high-dimensional biological data where a small subset of features accounts for most variance of the dataset. In this study we propose a new classification method for high-dimensional biological data, which performs both feature selection and classification within a single framework. Our proposed method utilises a sparse linear solution technique and the bootstrap aggregating algorithm. We tested its performance on four public mass spectrometry cancer datasets along with two other conventional classification techniques such as Support Vector Machines and Adaptive Boosting. The results demonstrate that our proposed method performs more accurate classification across various cancer datasets than those conventional classification techniques." @default.
- W1963462023 created "2016-06-24" @default.
- W1963462023 creator A5022509823 @default.
- W1963462023 creator A5042438173 @default.
- W1963462023 creator A5073783812 @default.
- W1963462023 creator A5090730019 @default.
- W1963462023 date "2015-01-01" @default.
- W1963462023 modified "2023-10-18" @default.
- W1963462023 title "Ensemble of sparse classifiers for high-dimensional biological data" @default.
- W1963462023 cites W1484777458 @default.
- W1963462023 cites W174083618 @default.
- W1963462023 cites W1999159796 @default.
- W1963462023 cites W2022611944 @default.
- W1963462023 cites W2042068674 @default.
- W1963462023 cites W2050834445 @default.
- W1963462023 cites W2075800337 @default.
- W1963462023 cites W2084370397 @default.
- W1963462023 cites W2089927030 @default.
- W1963462023 cites W2093717447 @default.
- W1963462023 cites W2094462291 @default.
- W1963462023 cites W2097360283 @default.
- W1963462023 cites W2100068253 @default.
- W1963462023 cites W2107956883 @default.
- W1963462023 cites W2122315118 @default.
- W1963462023 cites W2122814955 @default.
- W1963462023 cites W2131703061 @default.
- W1963462023 cites W2134389439 @default.
- W1963462023 cites W2137959503 @default.
- W1963462023 cites W2145646861 @default.
- W1963462023 cites W2153635508 @default.
- W1963462023 cites W2154332973 @default.
- W1963462023 cites W2154639585 @default.
- W1963462023 cites W2158698691 @default.
- W1963462023 cites W2172300860 @default.
- W1963462023 cites W2803670972 @default.
- W1963462023 cites W2912934387 @default.
- W1963462023 doi "https://doi.org/10.1504/ijdmb.2015.069416" @default.
- W1963462023 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26510301" @default.
- W1963462023 hasPublicationYear "2015" @default.
- W1963462023 type Work @default.
- W1963462023 sameAs 1963462023 @default.
- W1963462023 citedByCount "6" @default.
- W1963462023 countsByYear W19634620232016 @default.
- W1963462023 countsByYear W19634620232018 @default.
- W1963462023 countsByYear W19634620232019 @default.
- W1963462023 countsByYear W19634620232023 @default.
- W1963462023 crossrefType "journal-article" @default.
- W1963462023 hasAuthorship W1963462023A5022509823 @default.
- W1963462023 hasAuthorship W1963462023A5042438173 @default.
- W1963462023 hasAuthorship W1963462023A5073783812 @default.
- W1963462023 hasAuthorship W1963462023A5090730019 @default.
- W1963462023 hasConcept C119857082 @default.
- W1963462023 hasConcept C12267149 @default.
- W1963462023 hasConcept C124101348 @default.
- W1963462023 hasConcept C148483581 @default.
- W1963462023 hasConcept C153180895 @default.
- W1963462023 hasConcept C154945302 @default.
- W1963462023 hasConcept C184509293 @default.
- W1963462023 hasConcept C201797286 @default.
- W1963462023 hasConcept C202444582 @default.
- W1963462023 hasConcept C2780724565 @default.
- W1963462023 hasConcept C3019722297 @default.
- W1963462023 hasConcept C33676613 @default.
- W1963462023 hasConcept C33923547 @default.
- W1963462023 hasConcept C41008148 @default.
- W1963462023 hasConcept C46686674 @default.
- W1963462023 hasConcept C60644358 @default.
- W1963462023 hasConcept C70518039 @default.
- W1963462023 hasConcept C73555534 @default.
- W1963462023 hasConcept C81917197 @default.
- W1963462023 hasConcept C86803240 @default.
- W1963462023 hasConceptScore W1963462023C119857082 @default.
- W1963462023 hasConceptScore W1963462023C12267149 @default.
- W1963462023 hasConceptScore W1963462023C124101348 @default.
- W1963462023 hasConceptScore W1963462023C148483581 @default.
- W1963462023 hasConceptScore W1963462023C153180895 @default.
- W1963462023 hasConceptScore W1963462023C154945302 @default.
- W1963462023 hasConceptScore W1963462023C184509293 @default.
- W1963462023 hasConceptScore W1963462023C201797286 @default.
- W1963462023 hasConceptScore W1963462023C202444582 @default.
- W1963462023 hasConceptScore W1963462023C2780724565 @default.
- W1963462023 hasConceptScore W1963462023C3019722297 @default.
- W1963462023 hasConceptScore W1963462023C33676613 @default.
- W1963462023 hasConceptScore W1963462023C33923547 @default.
- W1963462023 hasConceptScore W1963462023C41008148 @default.
- W1963462023 hasConceptScore W1963462023C46686674 @default.
- W1963462023 hasConceptScore W1963462023C60644358 @default.
- W1963462023 hasConceptScore W1963462023C70518039 @default.
- W1963462023 hasConceptScore W1963462023C73555534 @default.
- W1963462023 hasConceptScore W1963462023C81917197 @default.
- W1963462023 hasConceptScore W1963462023C86803240 @default.
- W1963462023 hasIssue "2" @default.
- W1963462023 hasLocation W19634620231 @default.
- W1963462023 hasLocation W19634620232 @default.
- W1963462023 hasOpenAccess W1963462023 @default.
- W1963462023 hasPrimaryLocation W19634620231 @default.
- W1963462023 hasRelatedWork W1963462023 @default.
- W1963462023 hasRelatedWork W1996541855 @default.