Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963516639> ?p ?o ?g. }
- W1963516639 endingPage "5880" @default.
- W1963516639 startingPage "5871" @default.
- W1963516639 abstract "Several pathogen parasite species show different susceptibilities to different antiparasite drugs. Unfortunately, almost all structure-based methods are one-task or one-target Quantitative Structure–Activity Relationships (ot-QSAR) that predict the biological activity of drugs against only one parasite species. Consequently, multi-tasking learning to predict drugs activity against different species by a single model (mt-QSAR) is vitally important. In the two previous works of the present series we reported two single mt-QSAR models in order to predict the antimicrobial activity against different fungal (Bioorg. Med. Chem. 2006, 14, 5973–5980) or bacterial species (Bioorg. Med. Chem. 2007, 15, 897–902). These mt-QSARs offer a good opportunity (unpractical with ot-QSAR) to construct drug–drug similarity Complex Networks and to map the contribution of sub-structures to function for multiple species. These possibilities were unattended in our previous works. In the present work, we continue this series toward other important direction of chemotherapy (antiparasite drugs) with the development of an mt-QSAR for more than 500 drugs tested in the literature against different parasites. The data were processed by Linear Discriminant Analysis (LDA) classifying drugs as active or non-active against the different tested parasite species. The model correctly classifies 212 out of 244 (87.0%) cases in training series and 207 out of 243 compounds (85.4%) in external validation series. In order to illustrate the performance of the QSAR for the selection of active drugs we carried out an additional virtual screening of antiparasite compounds not used in training or predicting series; the model recognized 97 out of 114 (85.1%) of them. We also give the procedures to construct back-projection maps and to calculate sub-structures contribution to the biological activity. Finally, we used the outputs of the QSAR to construct, by the first time, a multi-species Complex Networks of antiparasite drugs. The network predicted has 380 nodes (compounds), 634 edges (pairs of compounds with similar activity). This network allows us to cluster different compounds and identify on average three known compounds similar to a new query compound according to their profile of biological activity. This is the first attempt to calculate probabilities of antiparasitic action of drugs against different parasites." @default.
- W1963516639 created "2016-06-24" @default.
- W1963516639 creator A5006634749 @default.
- W1963516639 creator A5013497733 @default.
- W1963516639 creator A5013565751 @default.
- W1963516639 creator A5077102348 @default.
- W1963516639 creator A5083281814 @default.
- W1963516639 date "2008-06-01" @default.
- W1963516639 modified "2023-10-18" @default.
- W1963516639 title "Unified QSAR approach to antimicrobials. Part 3: First multi-tasking QSAR model for Input-Coded prediction, structural back-projection, and complex networks clustering of antiprotozoal compounds" @default.
- W1963516639 cites W1515270868 @default.
- W1963516639 cites W1965345429 @default.
- W1963516639 cites W1967616514 @default.
- W1963516639 cites W1968011601 @default.
- W1963516639 cites W1975034194 @default.
- W1963516639 cites W1975898015 @default.
- W1963516639 cites W1981532526 @default.
- W1963516639 cites W1982943381 @default.
- W1963516639 cites W1984811139 @default.
- W1963516639 cites W1987641226 @default.
- W1963516639 cites W1988875897 @default.
- W1963516639 cites W1992611413 @default.
- W1963516639 cites W1999246286 @default.
- W1963516639 cites W2001515828 @default.
- W1963516639 cites W2003187123 @default.
- W1963516639 cites W2005281435 @default.
- W1963516639 cites W2006312249 @default.
- W1963516639 cites W2008489796 @default.
- W1963516639 cites W2013333835 @default.
- W1963516639 cites W2017278786 @default.
- W1963516639 cites W2018076081 @default.
- W1963516639 cites W2018762865 @default.
- W1963516639 cites W2023703189 @default.
- W1963516639 cites W2027323036 @default.
- W1963516639 cites W2033501170 @default.
- W1963516639 cites W2041297269 @default.
- W1963516639 cites W2045568930 @default.
- W1963516639 cites W2058265092 @default.
- W1963516639 cites W2058556255 @default.
- W1963516639 cites W2061755207 @default.
- W1963516639 cites W2063452545 @default.
- W1963516639 cites W2065363877 @default.
- W1963516639 cites W2065434265 @default.
- W1963516639 cites W2070722739 @default.
- W1963516639 cites W2072671784 @default.
- W1963516639 cites W2074890905 @default.
- W1963516639 cites W2078064829 @default.
- W1963516639 cites W2082021116 @default.
- W1963516639 cites W2082153551 @default.
- W1963516639 cites W2083352412 @default.
- W1963516639 cites W2085351863 @default.
- W1963516639 cites W2087138700 @default.
- W1963516639 cites W2087470089 @default.
- W1963516639 cites W2089183650 @default.
- W1963516639 cites W2091545210 @default.
- W1963516639 cites W2099757084 @default.
- W1963516639 cites W2107019398 @default.
- W1963516639 cites W2107749303 @default.
- W1963516639 cites W2109034827 @default.
- W1963516639 cites W2113485564 @default.
- W1963516639 cites W2119604853 @default.
- W1963516639 cites W2124540200 @default.
- W1963516639 cites W2124994832 @default.
- W1963516639 cites W2128566472 @default.
- W1963516639 cites W2139708889 @default.
- W1963516639 cites W2142049361 @default.
- W1963516639 cites W2152446532 @default.
- W1963516639 cites W2155057325 @default.
- W1963516639 cites W2160375308 @default.
- W1963516639 cites W2167772971 @default.
- W1963516639 cites W2172268214 @default.
- W1963516639 cites W2203595778 @default.
- W1963516639 cites W2212567822 @default.
- W1963516639 cites W2329686304 @default.
- W1963516639 cites W2485540135 @default.
- W1963516639 cites W4238024104 @default.
- W1963516639 cites W2216283630 @default.
- W1963516639 doi "https://doi.org/10.1016/j.bmc.2008.04.068" @default.
- W1963516639 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/18485714" @default.
- W1963516639 hasPublicationYear "2008" @default.
- W1963516639 type Work @default.
- W1963516639 sameAs 1963516639 @default.
- W1963516639 citedByCount "155" @default.
- W1963516639 countsByYear W19635166392012 @default.
- W1963516639 countsByYear W19635166392013 @default.
- W1963516639 countsByYear W19635166392014 @default.
- W1963516639 countsByYear W19635166392015 @default.
- W1963516639 countsByYear W19635166392016 @default.
- W1963516639 countsByYear W19635166392017 @default.
- W1963516639 countsByYear W19635166392018 @default.
- W1963516639 countsByYear W19635166392019 @default.
- W1963516639 countsByYear W19635166392020 @default.
- W1963516639 countsByYear W19635166392021 @default.
- W1963516639 countsByYear W19635166392022 @default.
- W1963516639 crossrefType "journal-article" @default.
- W1963516639 hasAuthorship W1963516639A5006634749 @default.
- W1963516639 hasAuthorship W1963516639A5013497733 @default.
- W1963516639 hasAuthorship W1963516639A5013565751 @default.