Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963526209> ?p ?o ?g. }
- W1963526209 endingPage "1669" @default.
- W1963526209 startingPage "1650" @default.
- W1963526209 abstract "Mixing intensity of the liquid phase, power consumption and volumetric mass transfer coefficients are presented for various single-, double- and triple-impeller configurations. The measurements were carried out in a flat-bottomed vessel of inner diameter 0.29 m. Twenty-eight combinations of various impeller types inducing radial, axial and combined liquid flow were used, viz. a Rushton Turbine (RT), a six Pitched Blade (PB), Techmix 335 (TX) impellers pumping downwards (D) and upwards (U), Lightnin A315 (LTN) and a Narcissus (NS) impeller. Water, 0.5 M Na2SO4 solution and solution of commercial thickener (Sokrat 44) were used as a liquid phase, representing coalescent, non-coalescent and viscous batches, respectively. Mixing intensity of the liquid phase was characterized by both exchange flows and homogenization times. The dimensionless mixing time, Ntm, does not depend on Reynolds number but on the direction of liquid flow induced by the impeller. The axial impellers (TXU, TXD, and LTN) provide more effective homogenization than the impellers with combined or radial flow (PBU, PBD, NS and RT). General correlations of gassed to ungassed power ratio (valid for all types of batches used) are presented separately for the bottom and upper stages of the vessel. Volumetric mass transfer coefficient kLa was measured in individual stages of the vessel by the dynamic pressure method (DPM). Analysis of the effect of liquid exchange flow between stages and the effect of axial dispersion in the gas phase on kLa values measured by the DPM has shown that the arithmetic mean of these “local” values depends neither on gas phase axial dispersion nor on the liquid exchange flows and is equal to the arithmetic mean of the true local mass transfer coefficients in individual sections of the vessel. Two types of correlations were used to fit the “local” and the average kLa values with specific total power dissipated, superficial gas velocity, power number (characterizing impeller type) and gassed to ungassed power ratio (characterizing impeller placement in the multiple-impeller configuration, bottom vs. upper stages). General correlations (valid for all impeller configurations) are presented for each type of liquid batch used (coalescent and non-coalescent non-viscous batches and viscous batch). 3RT, RT+2PBD and RT+2PBU are the most efficient impeller combinations for the mass transfer performance in the triple-impeller vessel. The two latter configurations require a 15% enhancement of agitator frequency to reach an equivalent power dissipation and performance when compared to the 3RT configuration." @default.
- W1963526209 created "2016-06-24" @default.
- W1963526209 creator A5001194672 @default.
- W1963526209 creator A5001694967 @default.
- W1963526209 creator A5065215057 @default.
- W1963526209 date "2007-03-01" @default.
- W1963526209 modified "2023-10-16" @default.
- W1963526209 title "Mass transfer correlations for multiple-impeller gas–liquid contactors. Analysis of the effect of axial dispersion in gas and liquid phases on “local”<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML altimg=si142.gif display=inline overflow=scroll><mml:msub><mml:mrow><mml:mi>k</mml:mi></mml:mrow><mml:mrow><mml:mi>L</mml:mi></mml:mrow></mml:msub><mml:mi>a</mml:mi></mml:math> values measured by the dynamic pressure method in individual stages of the vessel" @default.
- W1963526209 cites W1483909917 @default.
- W1963526209 cites W1965876945 @default.
- W1963526209 cites W1966407279 @default.
- W1963526209 cites W1983003209 @default.
- W1963526209 cites W1987791281 @default.
- W1963526209 cites W1995749619 @default.
- W1963526209 cites W1997545515 @default.
- W1963526209 cites W1997651433 @default.
- W1963526209 cites W1999925250 @default.
- W1963526209 cites W2006044798 @default.
- W1963526209 cites W2008999502 @default.
- W1963526209 cites W2015856455 @default.
- W1963526209 cites W2017009161 @default.
- W1963526209 cites W2019095148 @default.
- W1963526209 cites W2022774695 @default.
- W1963526209 cites W2027183240 @default.
- W1963526209 cites W2033241775 @default.
- W1963526209 cites W2040255928 @default.
- W1963526209 cites W2048568961 @default.
- W1963526209 cites W2050965201 @default.
- W1963526209 cites W2055270884 @default.
- W1963526209 cites W2061469814 @default.
- W1963526209 cites W2068271092 @default.
- W1963526209 cites W2072811205 @default.
- W1963526209 cites W2076901771 @default.
- W1963526209 cites W2078533996 @default.
- W1963526209 cites W2080723525 @default.
- W1963526209 cites W2088583634 @default.
- W1963526209 cites W2089051189 @default.
- W1963526209 cites W2093493740 @default.
- W1963526209 cites W2094350750 @default.
- W1963526209 cites W2111027316 @default.
- W1963526209 cites W2129620123 @default.
- W1963526209 doi "https://doi.org/10.1016/j.ces.2006.12.003" @default.
- W1963526209 hasPublicationYear "2007" @default.
- W1963526209 type Work @default.
- W1963526209 sameAs 1963526209 @default.
- W1963526209 citedByCount "78" @default.
- W1963526209 countsByYear W19635262092012 @default.
- W1963526209 countsByYear W19635262092013 @default.
- W1963526209 countsByYear W19635262092014 @default.
- W1963526209 countsByYear W19635262092015 @default.
- W1963526209 countsByYear W19635262092016 @default.
- W1963526209 countsByYear W19635262092017 @default.
- W1963526209 countsByYear W19635262092018 @default.
- W1963526209 countsByYear W19635262092019 @default.
- W1963526209 countsByYear W19635262092020 @default.
- W1963526209 countsByYear W19635262092021 @default.
- W1963526209 countsByYear W19635262092022 @default.
- W1963526209 countsByYear W19635262092023 @default.
- W1963526209 crossrefType "journal-article" @default.
- W1963526209 hasAuthorship W1963526209A5001194672 @default.
- W1963526209 hasAuthorship W1963526209A5001694967 @default.
- W1963526209 hasAuthorship W1963526209A5065215057 @default.
- W1963526209 hasConcept C101555633 @default.
- W1963526209 hasConcept C113196181 @default.
- W1963526209 hasConcept C121332964 @default.
- W1963526209 hasConcept C130217890 @default.
- W1963526209 hasConcept C138777275 @default.
- W1963526209 hasConcept C153005164 @default.
- W1963526209 hasConcept C182748727 @default.
- W1963526209 hasConcept C185592680 @default.
- W1963526209 hasConcept C18903297 @default.
- W1963526209 hasConcept C192562407 @default.
- W1963526209 hasConcept C196558001 @default.
- W1963526209 hasConcept C24872484 @default.
- W1963526209 hasConcept C2778722038 @default.
- W1963526209 hasConcept C2778912791 @default.
- W1963526209 hasConcept C2779506852 @default.
- W1963526209 hasConcept C43617362 @default.
- W1963526209 hasConcept C51038369 @default.
- W1963526209 hasConcept C57879066 @default.
- W1963526209 hasConcept C62520636 @default.
- W1963526209 hasConcept C86803240 @default.
- W1963526209 hasConcept C97355855 @default.
- W1963526209 hasConceptScore W1963526209C101555633 @default.
- W1963526209 hasConceptScore W1963526209C113196181 @default.
- W1963526209 hasConceptScore W1963526209C121332964 @default.
- W1963526209 hasConceptScore W1963526209C130217890 @default.
- W1963526209 hasConceptScore W1963526209C138777275 @default.
- W1963526209 hasConceptScore W1963526209C153005164 @default.
- W1963526209 hasConceptScore W1963526209C182748727 @default.
- W1963526209 hasConceptScore W1963526209C185592680 @default.
- W1963526209 hasConceptScore W1963526209C18903297 @default.
- W1963526209 hasConceptScore W1963526209C192562407 @default.
- W1963526209 hasConceptScore W1963526209C196558001 @default.
- W1963526209 hasConceptScore W1963526209C24872484 @default.
- W1963526209 hasConceptScore W1963526209C2778722038 @default.
- W1963526209 hasConceptScore W1963526209C2778912791 @default.
- W1963526209 hasConceptScore W1963526209C2779506852 @default.