Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963549306> ?p ?o ?g. }
- W1963549306 endingPage "403" @default.
- W1963549306 startingPage "363" @default.
- W1963549306 abstract "If model parameterizations of unresolved physics, such as the variety of upper ocean mixing processes, are to hold over the large range of time and space scales of importance to climate, they must be strongly physically based. Observations, theories, and models of oceanic vertical mixing are surveyed. Two distinct regimes are identified: ocean mixing in the boundary layer near the surface under a variety of surface forcing conditions (stabilizing, destabilizing, and wind driven), and mixing in the ocean interior due to internal waves, shear instability, and double diffusion (arising from the different molecular diffusion rates of heat and salt). Mixing schemes commonly applied to the upper ocean are shown not to contain some potentially important boundary layer physics. Therefore a new parameterization of oceanic boundary layer mixing is developed to accommodate some of this physics. It includes a scheme for determining the boundary layer depth h , where the turbulent contribution to the vertical shear of a bulk Richardson number is parameterized. Expressions for diffusivity and nonlocal transport throughout the boundary layer are given. The diffusivity is formulated to agree with similarity theory of turbulence in the surface layer and is subject to the conditions that both it and its vertical gradient match the interior values at h . This nonlocal “ K profile parameterization” (KPP) is then verified and compared to alternatives, including its atmospheric counterparts. Its most important feature is shown to be the capability of the boundary layer to penetrate well into a stable thermocline in both convective and wind‐driven situations. The diffusivities of the aforementioned three interior mixing processes are modeled as constants, functions of a gradient Richardson number (a measure of the relative importance of stratification to destabilizing shear), and functions of the double‐diffusion density ratio, R ρ . Oceanic simulations of convective penetration, wind deepening, and diurnal cycling are used to determine appropriate values for various model parameters as weak functions of vertical resolution. Annual cycle simulations at ocean weather station Papa for 1961 and 1969–1974 are used to test the complete suite of parameterizations. Model and observed temperatures at all depths are shown to agree very well into September, after which systematic advective cooling in the ocean produces expected differences. It is argued that this cooling and a steady salt advection into the model are needed to balance the net annual surface heating and freshwater input. With these advections, good multiyear simulations of temperature and salinity can be achieved. These results and KPP simulations of the diurnal cycle at the Long‐Term Upper Ocean Study (LOTUS) site are compared with the results of other models. It is demonstrated that the KPP model exchanges properties between the mixed layer and thermocline in a manner consistent with observations, and at least as well or better than alternatives." @default.
- W1963549306 created "2016-06-24" @default.
- W1963549306 creator A5019762083 @default.
- W1963549306 creator A5021731435 @default.
- W1963549306 creator A5049069215 @default.
- W1963549306 date "1994-11-01" @default.
- W1963549306 modified "2023-10-10" @default.
- W1963549306 title "Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization" @default.
- W1963549306 cites W144052207 @default.
- W1963549306 cites W1530889272 @default.
- W1963549306 cites W1562616331 @default.
- W1963549306 cites W1667277804 @default.
- W1963549306 cites W1965996837 @default.
- W1963549306 cites W1966692830 @default.
- W1963549306 cites W1967025782 @default.
- W1963549306 cites W1968494332 @default.
- W1963549306 cites W1969740551 @default.
- W1963549306 cites W1970089610 @default.
- W1963549306 cites W1972992260 @default.
- W1963549306 cites W1977241929 @default.
- W1963549306 cites W1980949094 @default.
- W1963549306 cites W1982577318 @default.
- W1963549306 cites W1983111836 @default.
- W1963549306 cites W1985168927 @default.
- W1963549306 cites W1987118418 @default.
- W1963549306 cites W1987140621 @default.
- W1963549306 cites W1988515343 @default.
- W1963549306 cites W1989314751 @default.
- W1963549306 cites W1989999968 @default.
- W1963549306 cites W1993831568 @default.
- W1963549306 cites W1995437423 @default.
- W1963549306 cites W1995892971 @default.
- W1963549306 cites W1996430294 @default.
- W1963549306 cites W1997997020 @default.
- W1963549306 cites W2003889669 @default.
- W1963549306 cites W2009477203 @default.
- W1963549306 cites W2009744985 @default.
- W1963549306 cites W2012688771 @default.
- W1963549306 cites W2016078397 @default.
- W1963549306 cites W2016607088 @default.
- W1963549306 cites W2017376077 @default.
- W1963549306 cites W2018679981 @default.
- W1963549306 cites W2021734244 @default.
- W1963549306 cites W2025694538 @default.
- W1963549306 cites W2026119697 @default.
- W1963549306 cites W2026422942 @default.
- W1963549306 cites W2027813018 @default.
- W1963549306 cites W2031127053 @default.
- W1963549306 cites W2038742869 @default.
- W1963549306 cites W2040704646 @default.
- W1963549306 cites W2040799293 @default.
- W1963549306 cites W2043037362 @default.
- W1963549306 cites W2045948463 @default.
- W1963549306 cites W2046713616 @default.
- W1963549306 cites W2049084813 @default.
- W1963549306 cites W2051604588 @default.
- W1963549306 cites W2053006344 @default.
- W1963549306 cites W2054067541 @default.
- W1963549306 cites W2054579526 @default.
- W1963549306 cites W2055059354 @default.
- W1963549306 cites W2059123622 @default.
- W1963549306 cites W2059205508 @default.
- W1963549306 cites W2061439738 @default.
- W1963549306 cites W2064477787 @default.
- W1963549306 cites W2067698242 @default.
- W1963549306 cites W2068204246 @default.
- W1963549306 cites W2072350989 @default.
- W1963549306 cites W2073017686 @default.
- W1963549306 cites W2073976034 @default.
- W1963549306 cites W2077061628 @default.
- W1963549306 cites W2080760959 @default.
- W1963549306 cites W2081033705 @default.
- W1963549306 cites W2083329104 @default.
- W1963549306 cites W2088039222 @default.
- W1963549306 cites W2088672740 @default.
- W1963549306 cites W2088748214 @default.
- W1963549306 cites W2089727804 @default.
- W1963549306 cites W2090746674 @default.
- W1963549306 cites W2095029195 @default.
- W1963549306 cites W2096118949 @default.
- W1963549306 cites W2104957684 @default.
- W1963549306 cites W2105914586 @default.
- W1963549306 cites W2115408538 @default.
- W1963549306 cites W2118648278 @default.
- W1963549306 cites W212335114 @default.
- W1963549306 cites W2127196447 @default.
- W1963549306 cites W2131809220 @default.
- W1963549306 cites W2139300441 @default.
- W1963549306 cites W2145723259 @default.
- W1963549306 cites W2158627601 @default.
- W1963549306 cites W2162762589 @default.
- W1963549306 cites W2168795429 @default.
- W1963549306 cites W2172720772 @default.
- W1963549306 cites W2172818796 @default.
- W1963549306 cites W2173085987 @default.
- W1963549306 cites W2173247375 @default.
- W1963549306 cites W2173725642 @default.
- W1963549306 cites W2173973253 @default.