Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963555961> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W1963555961 endingPage "97" @default.
- W1963555961 startingPage "19" @default.
- W1963555961 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be an elliptic curve over a number field <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>F_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a Galois extension of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F> <mml:semantics> <mml:mi>F</mml:mi> <mml:annotation encoding=application/x-tex>F</mml:annotation> </mml:semantics> </mml:math> </inline-formula> whose Galois group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=p> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=application/x-tex>p</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-adic Lie group. The aim of the present paper is to provide some evidence that, in accordance with the main conjectures of Iwasawa theory, there is a close connection between the action of the Selmer group of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> over <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper F Subscript normal infinity> <mml:semantics> <mml:msub> <mml:mi>F</mml:mi> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:msub> <mml:annotation encoding=application/x-tex>F_infty</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and the global root numbers attached to the twists of the complex <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper L> <mml:semantics> <mml:mi>L</mml:mi> <mml:annotation encoding=application/x-tex>L</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-function of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper E> <mml:semantics> <mml:mi>E</mml:mi> <mml:annotation encoding=application/x-tex>E</mml:annotation> </mml:semantics> </mml:math> </inline-formula> by Artin representations of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1963555961 created "2016-06-24" @default.
- W1963555961 creator A5013290477 @default.
- W1963555961 creator A5032924862 @default.
- W1963555961 creator A5048289574 @default.
- W1963555961 creator A5048600829 @default.
- W1963555961 date "2009-04-15" @default.
- W1963555961 modified "2023-10-14" @default.
- W1963555961 title "Root numbers, Selmer groups, and non-commutative Iwasawa theory" @default.
- W1963555961 cites W1596185498 @default.
- W1963555961 cites W1642343437 @default.
- W1963555961 cites W1689757949 @default.
- W1963555961 cites W1995337246 @default.
- W1963555961 cites W1996584214 @default.
- W1963555961 cites W1998149513 @default.
- W1963555961 cites W2001572759 @default.
- W1963555961 cites W2012102331 @default.
- W1963555961 cites W2022306605 @default.
- W1963555961 cites W2031393192 @default.
- W1963555961 cites W2050530119 @default.
- W1963555961 cites W2055475331 @default.
- W1963555961 cites W2065282602 @default.
- W1963555961 cites W2089363159 @default.
- W1963555961 cites W2093995753 @default.
- W1963555961 cites W2101631867 @default.
- W1963555961 cites W2102455092 @default.
- W1963555961 cites W2108225232 @default.
- W1963555961 cites W2117244912 @default.
- W1963555961 cites W2127639879 @default.
- W1963555961 cites W2159475889 @default.
- W1963555961 cites W3022152413 @default.
- W1963555961 cites W4210385090 @default.
- W1963555961 cites W43097866 @default.
- W1963555961 doi "https://doi.org/10.1090/s1056-3911-09-00504-9" @default.
- W1963555961 hasPublicationYear "2009" @default.
- W1963555961 type Work @default.
- W1963555961 sameAs 1963555961 @default.
- W1963555961 citedByCount "38" @default.
- W1963555961 countsByYear W19635559612012 @default.
- W1963555961 countsByYear W19635559612013 @default.
- W1963555961 countsByYear W19635559612014 @default.
- W1963555961 countsByYear W19635559612015 @default.
- W1963555961 countsByYear W19635559612016 @default.
- W1963555961 countsByYear W19635559612017 @default.
- W1963555961 countsByYear W19635559612018 @default.
- W1963555961 countsByYear W19635559612021 @default.
- W1963555961 countsByYear W19635559612022 @default.
- W1963555961 countsByYear W19635559612023 @default.
- W1963555961 crossrefType "journal-article" @default.
- W1963555961 hasAuthorship W1963555961A5013290477 @default.
- W1963555961 hasAuthorship W1963555961A5032924862 @default.
- W1963555961 hasAuthorship W1963555961A5048289574 @default.
- W1963555961 hasAuthorship W1963555961A5048600829 @default.
- W1963555961 hasBestOaLocation W19635559611 @default.
- W1963555961 hasConcept C11413529 @default.
- W1963555961 hasConcept C154945302 @default.
- W1963555961 hasConcept C18903297 @default.
- W1963555961 hasConcept C2776321320 @default.
- W1963555961 hasConcept C2777299769 @default.
- W1963555961 hasConcept C33923547 @default.
- W1963555961 hasConcept C41008148 @default.
- W1963555961 hasConcept C86803240 @default.
- W1963555961 hasConceptScore W1963555961C11413529 @default.
- W1963555961 hasConceptScore W1963555961C154945302 @default.
- W1963555961 hasConceptScore W1963555961C18903297 @default.
- W1963555961 hasConceptScore W1963555961C2776321320 @default.
- W1963555961 hasConceptScore W1963555961C2777299769 @default.
- W1963555961 hasConceptScore W1963555961C33923547 @default.
- W1963555961 hasConceptScore W1963555961C41008148 @default.
- W1963555961 hasConceptScore W1963555961C86803240 @default.
- W1963555961 hasIssue "1" @default.
- W1963555961 hasLocation W19635559611 @default.
- W1963555961 hasLocation W19635559612 @default.
- W1963555961 hasOpenAccess W1963555961 @default.
- W1963555961 hasPrimaryLocation W19635559611 @default.
- W1963555961 hasRelatedWork W151193258 @default.
- W1963555961 hasRelatedWork W1529400504 @default.
- W1963555961 hasRelatedWork W1607472309 @default.
- W1963555961 hasRelatedWork W1871911958 @default.
- W1963555961 hasRelatedWork W1892467659 @default.
- W1963555961 hasRelatedWork W2349865494 @default.
- W1963555961 hasRelatedWork W2808586768 @default.
- W1963555961 hasRelatedWork W2998403542 @default.
- W1963555961 hasRelatedWork W3101673024 @default.
- W1963555961 hasRelatedWork W3107474891 @default.
- W1963555961 hasVolume "19" @default.
- W1963555961 isParatext "false" @default.
- W1963555961 isRetracted "false" @default.
- W1963555961 magId "1963555961" @default.
- W1963555961 workType "article" @default.