Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963561750> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W1963561750 endingPage "5776" @default.
- W1963561750 startingPage "5767" @default.
- W1963561750 abstract "Hidden Markov Model (HMM) is a widespread statistical model used in cases where the system involves not fully observable data sequences such as temporal pattern recognition and signal processing. The most difficult problem in dealing with HMMs is the training procedure, or parameter learning, for which several approaches has been proposed. Nevertheless, these methods suffer from trapping in local maxima and still no tractable algorithm is present to overcome this problem. On the other hand, good performances of ensemble methods, where multiple models are employed to obtain the target model, lead to considering ensemble learning in the HMM training problem. Until now, just a few ensemble methods have been proposed for HMMs which lack strong theoretical background, or do not involve all the basic models to construct the final model. Hence in this paper a new ensemble learning method for HMMs is proposed which takes advantage of information theory measures, specifically Rényi entropy, and addresses the mentioned problems of previous methods. In agreement with this claim, the results show superiority of the proposed method over other compared methods for both synthetic and real-world datasets. Besides, the proposed ensemble method succeeded to meet the performance of other methods with much lower required training samples." @default.
- W1963561750 created "2016-06-24" @default.
- W1963561750 creator A5067878883 @default.
- W1963561750 creator A5069799892 @default.
- W1963561750 creator A5081857712 @default.
- W1963561750 date "2013-11-01" @default.
- W1963561750 modified "2023-09-25" @default.
- W1963561750 title "Multiple Observations HMM Learning by Aggregating Ensemble Models" @default.
- W1963561750 cites W1547553618 @default.
- W1963561750 cites W2006862475 @default.
- W1963561750 cites W2007321142 @default.
- W1963561750 cites W2015478238 @default.
- W1963561750 cites W2024581784 @default.
- W1963561750 cites W2030524974 @default.
- W1963561750 cites W2032005922 @default.
- W1963561750 cites W2070534370 @default.
- W1963561750 cites W2075924196 @default.
- W1963561750 cites W2077574412 @default.
- W1963561750 cites W2086699924 @default.
- W1963561750 cites W2087204158 @default.
- W1963561750 cites W2095539364 @default.
- W1963561750 cites W2102122585 @default.
- W1963561750 cites W2118036489 @default.
- W1963561750 cites W2125838338 @default.
- W1963561750 cites W2137997715 @default.
- W1963561750 cites W2140836279 @default.
- W1963561750 cites W2146950091 @default.
- W1963561750 cites W2155146488 @default.
- W1963561750 cites W2171850596 @default.
- W1963561750 cites W3004732066 @default.
- W1963561750 cites W4212883601 @default.
- W1963561750 cites W4248437541 @default.
- W1963561750 doi "https://doi.org/10.1109/tsp.2013.2280179" @default.
- W1963561750 hasPublicationYear "2013" @default.
- W1963561750 type Work @default.
- W1963561750 sameAs 1963561750 @default.
- W1963561750 citedByCount "6" @default.
- W1963561750 countsByYear W19635617502015 @default.
- W1963561750 countsByYear W19635617502016 @default.
- W1963561750 countsByYear W19635617502017 @default.
- W1963561750 countsByYear W19635617502018 @default.
- W1963561750 countsByYear W19635617502021 @default.
- W1963561750 crossrefType "journal-article" @default.
- W1963561750 hasAuthorship W1963561750A5067878883 @default.
- W1963561750 hasAuthorship W1963561750A5069799892 @default.
- W1963561750 hasAuthorship W1963561750A5081857712 @default.
- W1963561750 hasConcept C106301342 @default.
- W1963561750 hasConcept C119857082 @default.
- W1963561750 hasConcept C121332964 @default.
- W1963561750 hasConcept C153180895 @default.
- W1963561750 hasConcept C154945302 @default.
- W1963561750 hasConcept C163836022 @default.
- W1963561750 hasConcept C196956702 @default.
- W1963561750 hasConcept C23224414 @default.
- W1963561750 hasConcept C41008148 @default.
- W1963561750 hasConcept C45942800 @default.
- W1963561750 hasConcept C54907487 @default.
- W1963561750 hasConcept C62520636 @default.
- W1963561750 hasConcept C9679016 @default.
- W1963561750 hasConcept C98763669 @default.
- W1963561750 hasConceptScore W1963561750C106301342 @default.
- W1963561750 hasConceptScore W1963561750C119857082 @default.
- W1963561750 hasConceptScore W1963561750C121332964 @default.
- W1963561750 hasConceptScore W1963561750C153180895 @default.
- W1963561750 hasConceptScore W1963561750C154945302 @default.
- W1963561750 hasConceptScore W1963561750C163836022 @default.
- W1963561750 hasConceptScore W1963561750C196956702 @default.
- W1963561750 hasConceptScore W1963561750C23224414 @default.
- W1963561750 hasConceptScore W1963561750C41008148 @default.
- W1963561750 hasConceptScore W1963561750C45942800 @default.
- W1963561750 hasConceptScore W1963561750C54907487 @default.
- W1963561750 hasConceptScore W1963561750C62520636 @default.
- W1963561750 hasConceptScore W1963561750C9679016 @default.
- W1963561750 hasConceptScore W1963561750C98763669 @default.
- W1963561750 hasIssue "22" @default.
- W1963561750 hasLocation W19635617501 @default.
- W1963561750 hasOpenAccess W1963561750 @default.
- W1963561750 hasPrimaryLocation W19635617501 @default.
- W1963561750 hasRelatedWork W1491028866 @default.
- W1963561750 hasRelatedWork W1840407238 @default.
- W1963561750 hasRelatedWork W1987887771 @default.
- W1963561750 hasRelatedWork W2114207969 @default.
- W1963561750 hasRelatedWork W2128895698 @default.
- W1963561750 hasRelatedWork W2233956239 @default.
- W1963561750 hasRelatedWork W2364873863 @default.
- W1963561750 hasRelatedWork W2371650803 @default.
- W1963561750 hasRelatedWork W2379374264 @default.
- W1963561750 hasRelatedWork W2380496726 @default.
- W1963561750 hasVolume "61" @default.
- W1963561750 isParatext "false" @default.
- W1963561750 isRetracted "false" @default.
- W1963561750 magId "1963561750" @default.
- W1963561750 workType "article" @default.