Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963569154> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W1963569154 abstract "For a complicated system based on high technology, once a part breaks down, the entire system can not work normally. Moreover, due to the complexity of its structure and fault causes, the fault diagnosis of the system is also complex and indeterminate, a single test equipment can hardly finish a difficult diagnose task, and fault diagnosis expert system can resolve these problems effectively. The traditional diagnose expert systems have many problems such as the bottleneck of knowledge acquisition, the fragility of knowledge, the pool ability of self-study, the inefficient reasoning, and the monotonicity of reasoning, so there are certain limitations. But the artifical neural networks technology is a new system, it is an mathematical model that applies the structure like the joint of synapses in hypothalamic neurons, which has the strong ability to study, and can learn from samples, obtain knowledge, store it in the network in the form of weight and threshold, and it is easy to implement the parallel processing, has the character of association memory, own the better robust. it ability of adaptive self-study is manifested mainly in adjusting the weight of network according to the change of enviroment by learning algorithms, so as to adapt to the environmental change. But the neural network can not explain its own reasoning. Therefore we will apply the neural network to the expert knowledge system, which can make them learn each other's good points mutually for common progress, constructing the new neural network expert system. The system is applied to the power fault diagnosis, achieving good results." @default.
- W1963569154 created "2016-06-24" @default.
- W1963569154 creator A5001267041 @default.
- W1963569154 creator A5004467877 @default.
- W1963569154 creator A5023025280 @default.
- W1963569154 creator A5039030237 @default.
- W1963569154 creator A5080647949 @default.
- W1963569154 date "2011-08-01" @default.
- W1963569154 modified "2023-09-25" @default.
- W1963569154 title "Research on Fault Diagnosis Expert System Fusing the Neural Network Knowledge" @default.
- W1963569154 doi "https://doi.org/10.1109/ihmsc.2011.54" @default.
- W1963569154 hasPublicationYear "2011" @default.
- W1963569154 type Work @default.
- W1963569154 sameAs 1963569154 @default.
- W1963569154 citedByCount "2" @default.
- W1963569154 countsByYear W19635691542014 @default.
- W1963569154 countsByYear W19635691542016 @default.
- W1963569154 crossrefType "proceedings-article" @default.
- W1963569154 hasAuthorship W1963569154A5001267041 @default.
- W1963569154 hasAuthorship W1963569154A5004467877 @default.
- W1963569154 hasAuthorship W1963569154A5023025280 @default.
- W1963569154 hasAuthorship W1963569154A5039030237 @default.
- W1963569154 hasAuthorship W1963569154A5080647949 @default.
- W1963569154 hasConcept C119857082 @default.
- W1963569154 hasConcept C127313418 @default.
- W1963569154 hasConcept C127413603 @default.
- W1963569154 hasConcept C149635348 @default.
- W1963569154 hasConcept C154945302 @default.
- W1963569154 hasConcept C165205528 @default.
- W1963569154 hasConcept C175551986 @default.
- W1963569154 hasConcept C201995342 @default.
- W1963569154 hasConcept C2777220311 @default.
- W1963569154 hasConcept C2780451532 @default.
- W1963569154 hasConcept C2780513914 @default.
- W1963569154 hasConcept C41008148 @default.
- W1963569154 hasConcept C50644808 @default.
- W1963569154 hasConcept C58328972 @default.
- W1963569154 hasConceptScore W1963569154C119857082 @default.
- W1963569154 hasConceptScore W1963569154C127313418 @default.
- W1963569154 hasConceptScore W1963569154C127413603 @default.
- W1963569154 hasConceptScore W1963569154C149635348 @default.
- W1963569154 hasConceptScore W1963569154C154945302 @default.
- W1963569154 hasConceptScore W1963569154C165205528 @default.
- W1963569154 hasConceptScore W1963569154C175551986 @default.
- W1963569154 hasConceptScore W1963569154C201995342 @default.
- W1963569154 hasConceptScore W1963569154C2777220311 @default.
- W1963569154 hasConceptScore W1963569154C2780451532 @default.
- W1963569154 hasConceptScore W1963569154C2780513914 @default.
- W1963569154 hasConceptScore W1963569154C41008148 @default.
- W1963569154 hasConceptScore W1963569154C50644808 @default.
- W1963569154 hasConceptScore W1963569154C58328972 @default.
- W1963569154 hasLocation W19635691541 @default.
- W1963569154 hasOpenAccess W1963569154 @default.
- W1963569154 hasPrimaryLocation W19635691541 @default.
- W1963569154 hasRelatedWork W1992431352 @default.
- W1963569154 hasRelatedWork W2137920205 @default.
- W1963569154 hasRelatedWork W2359218533 @default.
- W1963569154 hasRelatedWork W2365567737 @default.
- W1963569154 hasRelatedWork W2367076895 @default.
- W1963569154 hasRelatedWork W2374321845 @default.
- W1963569154 hasRelatedWork W2379568809 @default.
- W1963569154 hasRelatedWork W2385099160 @default.
- W1963569154 hasRelatedWork W2392966795 @default.
- W1963569154 hasRelatedWork W2393821349 @default.
- W1963569154 isParatext "false" @default.
- W1963569154 isRetracted "false" @default.
- W1963569154 magId "1963569154" @default.
- W1963569154 workType "article" @default.