Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963616025> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W1963616025 abstract "Abstract Pressure drop prediction in pipes is an old petroleum engineering problem. There is a long history of attempts to develop empirical correlations to predict the pressure drop in pipes. Some of these attempts have produced correlations that provide good prediction in some cases. However, their general applicability is question-able. Correlations that address only a specific class of problems exist. These types of correlation usually perform better than those which attempt to meet the need of av ariety of problems. Usually, the higher the_ number of variables in the model the lesser the reliability and general applicability of the correlations. This is the result of using methodologies such as conventional regression analysis. In such methodologies, the chances of correctly and completely captwing the relationship between variables decreases as the number of variables increases. Many parameters could be involved in these types of problems, such as gas-oil ratios in two phase systems, water flow in three phase systems, and inclination angles of the pipe, to name a few. In this paper, the authors introduce a new methodology for developing prediction models for pipes. This methodology, which has been named Virtual Measure-ment in Pipes (VMP), incorporates the cutting edge of infmmation technology, artificial neural networks (ANN), to address the development of tools to predict pressure drops in pipes and optimum design of pipelines under a variety of circumstances. The fimdamental problem with conventional approaches resides in the inherent sequential and point wise (as opposed to parallel and distributed) information processing methods used in development of such correlations. Because of this short coming, conventional methodologies are unable to address, defme, or unravel the highly complex relationships between many variables involved in the process. In this paper, artificial neural networks are used to develop a Virtual Measurement Tool to survey flowing bottom hole pressure in multi-phase systems using information such as oil, gas and water flow rates, temperature, oil and gas gravity, pipe length, swface pressure, and inclination angles of the pipe. The developed Virtual Measurement Tool has been applied to the published field data for flowing BHP predictions. VMP's predictions are com-pared to existing methods and the enhancement is clearly demon-strated. The developed VMP tool can be applied to wellbore hydraulic problems. It can address three-phase (oil, water, and gas) flow in well bores. This tool applies to a variety of wells, including vertical wells and those with various degrees of inclinations." @default.
- W1963616025 created "2016-06-24" @default.
- W1963616025 creator A5045070846 @default.
- W1963616025 creator A5047447540 @default.
- W1963616025 creator A5056993225 @default.
- W1963616025 creator A5064929182 @default.
- W1963616025 date "1995-09-18" @default.
- W1963616025 modified "2023-10-01" @default.
- W1963616025 title "Virtual Measurement in Pipes: Part 1-Flowing Bottom Hole Pressure Under Multi-Phase Flow and Inclined Wellbore Conditions" @default.
- W1963616025 cites W1977902904 @default.
- W1963616025 cites W2012476018 @default.
- W1963616025 cites W2026854096 @default.
- W1963616025 cites W2057201640 @default.
- W1963616025 cites W2166177315 @default.
- W1963616025 cites W2488487828 @default.
- W1963616025 cites W2803548562 @default.
- W1963616025 doi "https://doi.org/10.2118/30975-ms" @default.
- W1963616025 hasPublicationYear "1995" @default.
- W1963616025 type Work @default.
- W1963616025 sameAs 1963616025 @default.
- W1963616025 citedByCount "16" @default.
- W1963616025 countsByYear W19636160252013 @default.
- W1963616025 countsByYear W19636160252014 @default.
- W1963616025 countsByYear W19636160252015 @default.
- W1963616025 countsByYear W19636160252016 @default.
- W1963616025 countsByYear W19636160252018 @default.
- W1963616025 countsByYear W19636160252022 @default.
- W1963616025 crossrefType "proceedings-article" @default.
- W1963616025 hasAuthorship W1963616025A5045070846 @default.
- W1963616025 hasAuthorship W1963616025A5047447540 @default.
- W1963616025 hasAuthorship W1963616025A5056993225 @default.
- W1963616025 hasAuthorship W1963616025A5064929182 @default.
- W1963616025 hasConcept C114088122 @default.
- W1963616025 hasConcept C121332964 @default.
- W1963616025 hasConcept C127413603 @default.
- W1963616025 hasConcept C13736549 @default.
- W1963616025 hasConcept C154945302 @default.
- W1963616025 hasConcept C157115227 @default.
- W1963616025 hasConcept C162307627 @default.
- W1963616025 hasConcept C175309249 @default.
- W1963616025 hasConcept C2524010 @default.
- W1963616025 hasConcept C28719098 @default.
- W1963616025 hasConcept C33923547 @default.
- W1963616025 hasConcept C38349280 @default.
- W1963616025 hasConcept C41008148 @default.
- W1963616025 hasConcept C57879066 @default.
- W1963616025 hasConcept C78519656 @default.
- W1963616025 hasConcept C78762247 @default.
- W1963616025 hasConcept C9677107 @default.
- W1963616025 hasConceptScore W1963616025C114088122 @default.
- W1963616025 hasConceptScore W1963616025C121332964 @default.
- W1963616025 hasConceptScore W1963616025C127413603 @default.
- W1963616025 hasConceptScore W1963616025C13736549 @default.
- W1963616025 hasConceptScore W1963616025C154945302 @default.
- W1963616025 hasConceptScore W1963616025C157115227 @default.
- W1963616025 hasConceptScore W1963616025C162307627 @default.
- W1963616025 hasConceptScore W1963616025C175309249 @default.
- W1963616025 hasConceptScore W1963616025C2524010 @default.
- W1963616025 hasConceptScore W1963616025C28719098 @default.
- W1963616025 hasConceptScore W1963616025C33923547 @default.
- W1963616025 hasConceptScore W1963616025C38349280 @default.
- W1963616025 hasConceptScore W1963616025C41008148 @default.
- W1963616025 hasConceptScore W1963616025C57879066 @default.
- W1963616025 hasConceptScore W1963616025C78519656 @default.
- W1963616025 hasConceptScore W1963616025C78762247 @default.
- W1963616025 hasConceptScore W1963616025C9677107 @default.
- W1963616025 hasLocation W19636160251 @default.
- W1963616025 hasOpenAccess W1963616025 @default.
- W1963616025 hasPrimaryLocation W19636160251 @default.
- W1963616025 hasRelatedWork W2007688570 @default.
- W1963616025 hasRelatedWork W2032574057 @default.
- W1963616025 hasRelatedWork W2056263910 @default.
- W1963616025 hasRelatedWork W2138208509 @default.
- W1963616025 hasRelatedWork W2356037634 @default.
- W1963616025 hasRelatedWork W2357811016 @default.
- W1963616025 hasRelatedWork W2363664644 @default.
- W1963616025 hasRelatedWork W2393079683 @default.
- W1963616025 hasRelatedWork W2474409008 @default.
- W1963616025 hasRelatedWork W2899084033 @default.
- W1963616025 isParatext "false" @default.
- W1963616025 isRetracted "false" @default.
- W1963616025 magId "1963616025" @default.
- W1963616025 workType "article" @default.