Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963695964> ?p ?o ?g. }
- W1963695964 abstract "Abstract Land surface temperature (LST) is an important component of the energy-budget of the surface. In order to determine the brightness temperature (BT) measured by a satellite for a given LST, the atmospheric influence on radiance emitted by the surface has to be accounted for. Provided that the current state of the atmosphere (vertical moisture and temperature profiles) and the surface emissivity are sufficiently well known, it is possible to calculate the BT using a radiative transfer model (RTM), e.g., Moderate Resolution Transmittance Code 3 (MODTRAN-3). RTMs do not linearise the atmospheric effect and variations of surface emissivity, elevation, and view angle (i.e., the path through the atmosphere) are readily accounted for. However, RTMs are very expensive in terms of computing time and, therefore, not well suited to simulate large quantities of data. In order to overcome this limitation, the main objective of this study is to investigate if MODTRAN-3 can be substituted by a feed-forward neural network (NN). Training and validation data consist of inputs and outputs of MODTRAN-3 for 84 TOVS Initial Guess Retrieval (TIGR) profiles in the middle latitudes (45°N to 55°N). The RTM was run for these atmospheric situations and a range of LSTs, surface elevations, and view angles. In total, 4032 radiative transfer calculations were performed. A NN developed manually for this data is evaluated using forward calculations for atmospheric profiles from the European Centre of Medium-Range Weather Forecasts (ECMWF) analyses. Grid cells of the ECMWF analyses containing clouds are identified using cloudmasks derived from Meteosat IR and VIS data. The manually developed NN is compared against a NN developed by the evolutionary algorithm “Evolutionarer Netzwerk Optimierer” (ENZO). ENZO evolves populations of NNs: it utilises mutation and crossover to optimise NN topology (layers, number of neurons, and weights) and trains (fine-tunes) the NNs with the Stuttgart Neural Network Simulator (SNNS). The NN developed by ENZO has a rms validation error (untrained TIGR situations) of 0.25 K and a rms verification error (cloud-free situations from ECMWF analyses) of 0.31 K. ENZO is shown to produce substantially smaller NNs than the manual approach: the developed NN has 58% fewer hidden neurons and about 90% fewer weights than the manually developed NN. Furthermore, the NN developed by ENZO is more robust and generalises better. A major advantage of the NN is its computational speed, which is estimated to be of the order of 104 times faster than MODTRAN-3." @default.
- W1963695964 created "2016-06-24" @default.
- W1963695964 creator A5020176153 @default.
- W1963695964 creator A5067674679 @default.
- W1963695964 date "2002-04-01" @default.
- W1963695964 modified "2023-09-25" @default.
- W1963695964 title "Evolution of neural networks for radiative transfer calculations in the terrestrial infrared" @default.
- W1963695964 cites W1531857721 @default.
- W1963695964 cites W1968178976 @default.
- W1963695964 cites W1985137674 @default.
- W1963695964 cites W1986876733 @default.
- W1963695964 cites W1995282508 @default.
- W1963695964 cites W2004421671 @default.
- W1963695964 cites W2009507146 @default.
- W1963695964 cites W2013062088 @default.
- W1963695964 cites W2020926441 @default.
- W1963695964 cites W2021720319 @default.
- W1963695964 cites W2026361440 @default.
- W1963695964 cites W2043579401 @default.
- W1963695964 cites W2045787050 @default.
- W1963695964 cites W2062505718 @default.
- W1963695964 cites W2109779438 @default.
- W1963695964 cites W2125389748 @default.
- W1963695964 cites W2129831132 @default.
- W1963695964 cites W2147169375 @default.
- W1963695964 cites W2147904324 @default.
- W1963695964 cites W2304638042 @default.
- W1963695964 cites W2766736793 @default.
- W1963695964 cites W2985382943 @default.
- W1963695964 cites W3105196959 @default.
- W1963695964 cites W3200656788 @default.
- W1963695964 doi "https://doi.org/10.1016/s0034-4257(01)00297-8" @default.
- W1963695964 hasPublicationYear "2002" @default.
- W1963695964 type Work @default.
- W1963695964 sameAs 1963695964 @default.
- W1963695964 citedByCount "18" @default.
- W1963695964 countsByYear W19636959642012 @default.
- W1963695964 countsByYear W19636959642013 @default.
- W1963695964 countsByYear W19636959642018 @default.
- W1963695964 countsByYear W19636959642020 @default.
- W1963695964 crossrefType "journal-article" @default.
- W1963695964 hasAuthorship W1963695964A5020176153 @default.
- W1963695964 hasAuthorship W1963695964A5067674679 @default.
- W1963695964 hasConcept C118365302 @default.
- W1963695964 hasConcept C120665830 @default.
- W1963695964 hasConcept C121332964 @default.
- W1963695964 hasConcept C125245961 @default.
- W1963695964 hasConcept C127313418 @default.
- W1963695964 hasConcept C1276947 @default.
- W1963695964 hasConcept C147534773 @default.
- W1963695964 hasConcept C153294291 @default.
- W1963695964 hasConcept C156008332 @default.
- W1963695964 hasConcept C163651212 @default.
- W1963695964 hasConcept C19269812 @default.
- W1963695964 hasConcept C199390426 @default.
- W1963695964 hasConcept C23690007 @default.
- W1963695964 hasConcept C2776445388 @default.
- W1963695964 hasConcept C2778329001 @default.
- W1963695964 hasConcept C39432304 @default.
- W1963695964 hasConcept C53802167 @default.
- W1963695964 hasConcept C62649853 @default.
- W1963695964 hasConcept C65440619 @default.
- W1963695964 hasConcept C74902906 @default.
- W1963695964 hasConcept C91586092 @default.
- W1963695964 hasConceptScore W1963695964C118365302 @default.
- W1963695964 hasConceptScore W1963695964C120665830 @default.
- W1963695964 hasConceptScore W1963695964C121332964 @default.
- W1963695964 hasConceptScore W1963695964C125245961 @default.
- W1963695964 hasConceptScore W1963695964C127313418 @default.
- W1963695964 hasConceptScore W1963695964C1276947 @default.
- W1963695964 hasConceptScore W1963695964C147534773 @default.
- W1963695964 hasConceptScore W1963695964C153294291 @default.
- W1963695964 hasConceptScore W1963695964C156008332 @default.
- W1963695964 hasConceptScore W1963695964C163651212 @default.
- W1963695964 hasConceptScore W1963695964C19269812 @default.
- W1963695964 hasConceptScore W1963695964C199390426 @default.
- W1963695964 hasConceptScore W1963695964C23690007 @default.
- W1963695964 hasConceptScore W1963695964C2776445388 @default.
- W1963695964 hasConceptScore W1963695964C2778329001 @default.
- W1963695964 hasConceptScore W1963695964C39432304 @default.
- W1963695964 hasConceptScore W1963695964C53802167 @default.
- W1963695964 hasConceptScore W1963695964C62649853 @default.
- W1963695964 hasConceptScore W1963695964C65440619 @default.
- W1963695964 hasConceptScore W1963695964C74902906 @default.
- W1963695964 hasConceptScore W1963695964C91586092 @default.
- W1963695964 hasLocation W19636959641 @default.
- W1963695964 hasOpenAccess W1963695964 @default.
- W1963695964 hasPrimaryLocation W19636959641 @default.
- W1963695964 hasRelatedWork W1964996934 @default.
- W1963695964 hasRelatedWork W1986088353 @default.
- W1963695964 hasRelatedWork W1987828757 @default.
- W1963695964 hasRelatedWork W2005026808 @default.
- W1963695964 hasRelatedWork W2010221143 @default.
- W1963695964 hasRelatedWork W2032799862 @default.
- W1963695964 hasRelatedWork W2049868698 @default.
- W1963695964 hasRelatedWork W2057746737 @default.
- W1963695964 hasRelatedWork W2059205204 @default.
- W1963695964 hasRelatedWork W2071809672 @default.
- W1963695964 hasRelatedWork W2073415605 @default.
- W1963695964 hasRelatedWork W2084854255 @default.