Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963845908> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1963845908 endingPage "41" @default.
- W1963845908 startingPage "41" @default.
- W1963845908 abstract "Motivations. The gene function prediction problem is a real-world problem consisting in finding new bio-molecular functions of genes/gene products and characterized by hundreds or thousands of functional classes structured according to a predefined hierarchy. This problem can be formalized as a semi-supervised multi-class, multi-label classification problem where the biological functions of new genes can be predicted by exploiting their connections with genes whose biological functions are known. Many different approaches have been proposed to address this problem, including guilt- by-association [1], label propagation [2], module-assisted techniques [3], SVMs [4]. Nevertheless, these methods usually suffer a decay in performance when input data are highly unbalanced, that is positive examples are significantly less than negatives. This scenario characterizes in particular the most specific classes of the ontology, which are the classes more far from the root classes and that better describe the functions of genes. Methods. To address these items, we propose a regularization of a Hopfield-based cost- sensitive algorithm, COSNet, recently proposed to predict gene functions [5]. This algorithm, although designed to manage the imbalance in labeled data, tends to predict an excessively high proportion of positives when data are particularly unbalanced (that is in particular on most specific classes). By adding a term to the energy function of the network, we are able in modifying the dynamics in order to prevent the number of positives becomes too large. This energy term is minimized when the proportion of positive neurons (current positive rate) resembles the rate of positive labels in the training set (expected positive rate). The higher the difference between current and expected positive rates, the more the penalty to the energy function. We call this regularized version R-COSNet. Results. We tested R-COSNet on the prediction of yeast genes, by using four different data sets and the classes of the FunCat ontology [6]. This ontology is structured in forest of trees, in which each node belong to one of the six levels of specificity. Level 1 refers to the root nodes, level i to nodes at distance i from the root. The considered classes are those with at least 20 positives and are spanned from level 1 to level 5. We compared our methods with a label propagation algorithm, LP-Zhu [2], and Support Vector Machine (SVM) with probabilistic output [4]. In Figure 1 we report the results in terms of F-score averaged across the functional classes belonging to the level 4 and level 5 of the hierarchy. References 1. Oliver, S. Guilt-by-association goes global. Nature 2000, 403: 601-603. 2. Zhu, X, Ghahramani, Z, and Lafferty, J. Semi-supervised learning using gaussian fields and harmonic functions. In ICML 2003, 912-919. 3. Sharan, R, Ulitsky, I, and Shamir, R. Network-based prediction of protein function. Molecular Systems Biology 2007, 3:88. 4. Lin, HT, Lin, CJ, Weng, R. A note on platt’s probabilistic outputs for support vector machines. Machine Learning 2007, 68(3): 267-276. 5. Bertoni, A, Frasca, M, Valentini, G. Cosnet: A cost sensitive neural network for semi- supervised learning in graphs. ECML/PKDD (1) 2011, Lecture Notes in Computer Science, 6911: 219-234. 6. Ruepp, A, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research 2004, 32(18): 5539-5545." @default.
- W1963845908 created "2016-06-24" @default.
- W1963845908 creator A5011200814 @default.
- W1963845908 creator A5071444502 @default.
- W1963845908 creator A5075385368 @default.
- W1963845908 date "2012-04-29" @default.
- W1963845908 modified "2023-09-28" @default.
- W1963845908 title "Regularized Network-Based Algorithm for Predicting Gene Functions with High-Imbalanced Data" @default.
- W1963845908 cites W146076398 @default.
- W1963845908 cites W2056983531 @default.
- W1963845908 cites W2137917513 @default.
- W1963845908 cites W2139823104 @default.
- W1963845908 cites W2166468869 @default.
- W1963845908 cites W2770983033 @default.
- W1963845908 doi "https://doi.org/10.14806/ej.18.a.377" @default.
- W1963845908 hasPublicationYear "2012" @default.
- W1963845908 type Work @default.
- W1963845908 sameAs 1963845908 @default.
- W1963845908 citedByCount "0" @default.
- W1963845908 crossrefType "journal-article" @default.
- W1963845908 hasAuthorship W1963845908A5011200814 @default.
- W1963845908 hasAuthorship W1963845908A5071444502 @default.
- W1963845908 hasAuthorship W1963845908A5075385368 @default.
- W1963845908 hasBestOaLocation W19638459081 @default.
- W1963845908 hasConcept C11413529 @default.
- W1963845908 hasConcept C119857082 @default.
- W1963845908 hasConcept C121332964 @default.
- W1963845908 hasConcept C12267149 @default.
- W1963845908 hasConcept C124101348 @default.
- W1963845908 hasConcept C14036430 @default.
- W1963845908 hasConcept C154945302 @default.
- W1963845908 hasConcept C41008148 @default.
- W1963845908 hasConcept C61797465 @default.
- W1963845908 hasConcept C62520636 @default.
- W1963845908 hasConcept C64869954 @default.
- W1963845908 hasConcept C78458016 @default.
- W1963845908 hasConcept C86803240 @default.
- W1963845908 hasConceptScore W1963845908C11413529 @default.
- W1963845908 hasConceptScore W1963845908C119857082 @default.
- W1963845908 hasConceptScore W1963845908C121332964 @default.
- W1963845908 hasConceptScore W1963845908C12267149 @default.
- W1963845908 hasConceptScore W1963845908C124101348 @default.
- W1963845908 hasConceptScore W1963845908C14036430 @default.
- W1963845908 hasConceptScore W1963845908C154945302 @default.
- W1963845908 hasConceptScore W1963845908C41008148 @default.
- W1963845908 hasConceptScore W1963845908C61797465 @default.
- W1963845908 hasConceptScore W1963845908C62520636 @default.
- W1963845908 hasConceptScore W1963845908C64869954 @default.
- W1963845908 hasConceptScore W1963845908C78458016 @default.
- W1963845908 hasConceptScore W1963845908C86803240 @default.
- W1963845908 hasIssue "A" @default.
- W1963845908 hasLocation W19638459081 @default.
- W1963845908 hasOpenAccess W1963845908 @default.
- W1963845908 hasPrimaryLocation W19638459081 @default.
- W1963845908 hasRelatedWork W1032927584 @default.
- W1963845908 hasRelatedWork W1574321330 @default.
- W1963845908 hasRelatedWork W1594983789 @default.
- W1963845908 hasRelatedWork W1755468095 @default.
- W1963845908 hasRelatedWork W1834813338 @default.
- W1963845908 hasRelatedWork W1983415430 @default.
- W1963845908 hasRelatedWork W2114396536 @default.
- W1963845908 hasRelatedWork W2168645005 @default.
- W1963845908 hasRelatedWork W2295780565 @default.
- W1963845908 hasRelatedWork W2343086953 @default.
- W1963845908 hasRelatedWork W2741878218 @default.
- W1963845908 hasRelatedWork W2886654930 @default.
- W1963845908 hasRelatedWork W2945670763 @default.
- W1963845908 hasRelatedWork W2947118660 @default.
- W1963845908 hasRelatedWork W2947361127 @default.
- W1963845908 hasRelatedWork W2982663456 @default.
- W1963845908 hasRelatedWork W3028888589 @default.
- W1963845908 hasRelatedWork W3122666791 @default.
- W1963845908 hasRelatedWork W48831783 @default.
- W1963845908 hasRelatedWork W125330484 @default.
- W1963845908 hasVolume "18" @default.
- W1963845908 isParatext "false" @default.
- W1963845908 isRetracted "false" @default.
- W1963845908 magId "1963845908" @default.
- W1963845908 workType "article" @default.