Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963872220> ?p ?o ?g. }
- W1963872220 endingPage "2102" @default.
- W1963872220 startingPage "2083" @default.
- W1963872220 abstract "Time-dependent Reynolds-averaged CFD is performed for transient turbulent spray flames in a high-pressure, constant-volume chamber for two single-component fuels using skeletal chemical mechanisms. The simulations span a range of initial pressures, temperatures and compositions that correspond to conventional and advanced (e.g., low-temperature) compression-ignition engine combustion. The objectives are to establish the extent to which turbulent fluctuations in composition and temperature influence ignition delays and lift-off lengths and turbulent flame structure under engine-relevant conditions, and to provide insight into turbulence-chemistry interactions. This is done by comparing results from a model that accounts for turbulent fluctuations using a transported composition probability density function (PDF) method with those from a model that ignores the influence of turbulent fluctuations on local mean reaction rates (a locally well-stirred reactor – WSR – model). For robust diesel combustion conditions, the WSR and PDF computed ignition delays and lift-off lengths are close to each other, and both are in good agreement with experiment. For lower initial temperatures, ignition delays and lift-off lengths from the two models are significantly different, and the results from the PDF model are in better agreement with experiment. The differences are especially striking for n-dodecane. There the PDF-model computed ignition delays and lift-off lengths are within 10% of measured values for initial temperatures of 900 K and higher (for 22.8 kg/m3 density, 15% oxygen), while the WSR model predicts an ignition delay that is three times the measured value at 900 K. At an initial temperature of 800 K, the WSR model fails to ignite, whereas the PDF model computed ignition delay and lift-off length are within 30% of the measured values. In all cases, the WSR and PDF models produce significantly different turbulent flame structures, and the differences increase with decreasing initial temperature and oxygen level. The WSR model produces a thin laminar-like flame, while the PDF model gives a broadened turbulent flame brush that is qualitatively more consistent with what is expected for these highly turbulent flames and what is observed experimentally. Thus, while it may be possible to reproduce some global ignition characteristics using a WSR model (depending on the choice of chemical mechanism), turbulent fluctuations play an increasingly important role at lower initial temperatures and oxygen levels." @default.
- W1963872220 created "2016-06-24" @default.
- W1963872220 creator A5032429252 @default.
- W1963872220 creator A5050298263 @default.
- W1963872220 date "2013-10-01" @default.
- W1963872220 modified "2023-09-25" @default.
- W1963872220 title "Simulations of transient n-heptane and n-dodecane spray flames under engine-relevant conditions using a transported PDF method" @default.
- W1963872220 cites W1965258398 @default.
- W1963872220 cites W1967557420 @default.
- W1963872220 cites W1969566189 @default.
- W1963872220 cites W1970365464 @default.
- W1963872220 cites W1975463588 @default.
- W1963872220 cites W1981401379 @default.
- W1963872220 cites W1982733100 @default.
- W1963872220 cites W1984745122 @default.
- W1963872220 cites W1987600089 @default.
- W1963872220 cites W1994376567 @default.
- W1963872220 cites W1997060416 @default.
- W1963872220 cites W1999710482 @default.
- W1963872220 cites W2004417471 @default.
- W1963872220 cites W2005027835 @default.
- W1963872220 cites W2006386344 @default.
- W1963872220 cites W2006413412 @default.
- W1963872220 cites W2007058479 @default.
- W1963872220 cites W2008125897 @default.
- W1963872220 cites W2013661687 @default.
- W1963872220 cites W2015796140 @default.
- W1963872220 cites W2016277033 @default.
- W1963872220 cites W2021117057 @default.
- W1963872220 cites W2024290408 @default.
- W1963872220 cites W2024691862 @default.
- W1963872220 cites W2034051185 @default.
- W1963872220 cites W2035695320 @default.
- W1963872220 cites W2042113631 @default.
- W1963872220 cites W2043309686 @default.
- W1963872220 cites W2048998010 @default.
- W1963872220 cites W2049069130 @default.
- W1963872220 cites W2054845723 @default.
- W1963872220 cites W2055517627 @default.
- W1963872220 cites W2058430988 @default.
- W1963872220 cites W2060332455 @default.
- W1963872220 cites W2064201579 @default.
- W1963872220 cites W2065317310 @default.
- W1963872220 cites W2067809794 @default.
- W1963872220 cites W2072947750 @default.
- W1963872220 cites W2075596910 @default.
- W1963872220 cites W2076270811 @default.
- W1963872220 cites W2076326628 @default.
- W1963872220 cites W2082335044 @default.
- W1963872220 cites W2085741550 @default.
- W1963872220 cites W2087048213 @default.
- W1963872220 cites W2088458306 @default.
- W1963872220 cites W2140425664 @default.
- W1963872220 cites W2144007871 @default.
- W1963872220 cites W2149543127 @default.
- W1963872220 cites W2162728998 @default.
- W1963872220 cites W2165070086 @default.
- W1963872220 cites W2167604734 @default.
- W1963872220 cites W2168575889 @default.
- W1963872220 cites W2169944043 @default.
- W1963872220 cites W2257396215 @default.
- W1963872220 cites W1985687188 @default.
- W1963872220 doi "https://doi.org/10.1016/j.combustflame.2013.05.003" @default.
- W1963872220 hasPublicationYear "2013" @default.
- W1963872220 type Work @default.
- W1963872220 sameAs 1963872220 @default.
- W1963872220 citedByCount "117" @default.
- W1963872220 countsByYear W19638722202013 @default.
- W1963872220 countsByYear W19638722202014 @default.
- W1963872220 countsByYear W19638722202015 @default.
- W1963872220 countsByYear W19638722202016 @default.
- W1963872220 countsByYear W19638722202017 @default.
- W1963872220 countsByYear W19638722202018 @default.
- W1963872220 countsByYear W19638722202019 @default.
- W1963872220 countsByYear W19638722202020 @default.
- W1963872220 countsByYear W19638722202021 @default.
- W1963872220 countsByYear W19638722202022 @default.
- W1963872220 countsByYear W19638722202023 @default.
- W1963872220 crossrefType "journal-article" @default.
- W1963872220 hasAuthorship W1963872220A5032429252 @default.
- W1963872220 hasAuthorship W1963872220A5050298263 @default.
- W1963872220 hasConcept C105923489 @default.
- W1963872220 hasConcept C121332964 @default.
- W1963872220 hasConcept C124101348 @default.
- W1963872220 hasConcept C139002025 @default.
- W1963872220 hasConcept C147789679 @default.
- W1963872220 hasConcept C159063594 @default.
- W1963872220 hasConcept C178790620 @default.
- W1963872220 hasConcept C185592680 @default.
- W1963872220 hasConcept C192562407 @default.
- W1963872220 hasConcept C196558001 @default.
- W1963872220 hasConcept C2775846362 @default.
- W1963872220 hasConcept C41008148 @default.
- W1963872220 hasConcept C57879066 @default.
- W1963872220 hasConcept C64127748 @default.
- W1963872220 hasConcept C97355855 @default.
- W1963872220 hasConceptScore W1963872220C105923489 @default.
- W1963872220 hasConceptScore W1963872220C121332964 @default.