Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963926757> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W1963926757 endingPage "463" @default.
- W1963926757 startingPage "463" @default.
- W1963926757 abstract "Purpose: To reduce uncertainty in hepatic perfusion quantification from DCE-MRI for assessing tumor and normal tissue response to RT in intrahepatic cancer. Methods: Pharmacokinetic modeling of liver DCE-MRI estimates arterial inflow rate (ka), portal venous inflow rate (kp), central venous outflow rate (kl) and bolus arrival time delays (ta, tp) from respective arterial and portal vein input functions to tissue. The parametric images estimated by the conventional approach could exhibit large variance and severe bias. To reduce the uncertainty in the quantitative images, we incorporated the prior knowledge, the slowly spatial variation of the time delays in the liver, into the model by adding spatial regulations on the time delays. The weighting factors of regularizations were determined by Stein’s unbiased risk estimate (SURE) of the mean squared prediction error (MSPE). The regularized model was optimized by the conjugate gradient minimization and implemented on the GPU to achieve fast computation. The method was evaluated by simulated and patient DCE-MRI data. The simulated perfusion image was generated with (k2, ka, kp) of (400, 20,100 ml/(100g min)), smooth (ta, tp) maps in a 64x64 matrix, and Gaussian random noise to have contrast-to-noise ratios (CNR) of 10 to 100. Results: Compared to the conventional estimation, the proposed method reduced estimate variances from 14% to 8% for k2, 38% to 9% for ka, and 14% to 10% for kp in the simulated data with 20 CNR. The SURE-based method consistently led to the optimal weight of the regularization determined by the true MSPE on the simulation data. Regularizing time delays improved the hepatic perfusion images of the patient data. Conclusion: The improved repeatability and possible accuracy in hepatic perfusion images quantified from DCE-MRI have the potential to increase statistical power in clinical application of the physiological images for predicting outcome of liver cancer treatment. The work was supported by NIH/NCI grant RO1CA132834." @default.
- W1963926757 created "2016-06-24" @default.
- W1963926757 creator A5020712237 @default.
- W1963926757 creator A5045636490 @default.
- W1963926757 date "2014-05-29" @default.
- W1963926757 modified "2023-09-22" @default.
- W1963926757 title "TU-C-12A-04: Quantification of Hepatic Perfusion Maps From DCE MRI Using Spatial Regularization" @default.
- W1963926757 doi "https://doi.org/10.1118/1.4889294" @default.
- W1963926757 hasPublicationYear "2014" @default.
- W1963926757 type Work @default.
- W1963926757 sameAs 1963926757 @default.
- W1963926757 citedByCount "0" @default.
- W1963926757 crossrefType "journal-article" @default.
- W1963926757 hasAuthorship W1963926757A5020712237 @default.
- W1963926757 hasAuthorship W1963926757A5045636490 @default.
- W1963926757 hasConcept C126838900 @default.
- W1963926757 hasConcept C146957229 @default.
- W1963926757 hasConcept C183115368 @default.
- W1963926757 hasConcept C2989005 @default.
- W1963926757 hasConcept C33923547 @default.
- W1963926757 hasConcept C71924100 @default.
- W1963926757 hasConceptScore W1963926757C126838900 @default.
- W1963926757 hasConceptScore W1963926757C146957229 @default.
- W1963926757 hasConceptScore W1963926757C183115368 @default.
- W1963926757 hasConceptScore W1963926757C2989005 @default.
- W1963926757 hasConceptScore W1963926757C33923547 @default.
- W1963926757 hasConceptScore W1963926757C71924100 @default.
- W1963926757 hasIssue "6Part27" @default.
- W1963926757 hasLocation W19639267571 @default.
- W1963926757 hasOpenAccess W1963926757 @default.
- W1963926757 hasPrimaryLocation W19639267571 @default.
- W1963926757 hasRelatedWork W1597465720 @default.
- W1963926757 hasRelatedWork W1970418185 @default.
- W1963926757 hasRelatedWork W1999614991 @default.
- W1963926757 hasRelatedWork W2037361429 @default.
- W1963926757 hasRelatedWork W2042949464 @default.
- W1963926757 hasRelatedWork W2071026440 @default.
- W1963926757 hasRelatedWork W2117895833 @default.
- W1963926757 hasRelatedWork W2467648417 @default.
- W1963926757 hasRelatedWork W2468775660 @default.
- W1963926757 hasRelatedWork W2615153727 @default.
- W1963926757 hasRelatedWork W2619677274 @default.
- W1963926757 hasRelatedWork W2753523098 @default.
- W1963926757 hasRelatedWork W2804877957 @default.
- W1963926757 hasRelatedWork W2885986670 @default.
- W1963926757 hasRelatedWork W2967204515 @default.
- W1963926757 hasRelatedWork W2971210915 @default.
- W1963926757 hasRelatedWork W2987220201 @default.
- W1963926757 hasRelatedWork W3210446039 @default.
- W1963926757 hasRelatedWork W2089261463 @default.
- W1963926757 hasRelatedWork W2182692818 @default.
- W1963926757 hasVolume "41" @default.
- W1963926757 isParatext "false" @default.
- W1963926757 isRetracted "false" @default.
- W1963926757 magId "1963926757" @default.
- W1963926757 workType "article" @default.