Matches in SemOpenAlex for { <https://semopenalex.org/work/W1963994909> ?p ?o ?g. }
- W1963994909 endingPage "641" @default.
- W1963994909 startingPage "641" @default.
- W1963994909 abstract "Comparison and classification of metagenome samples is one of the major tasks in the study of microbial communities of natural environments or niches on human bodies. Bioinformatics methods play important roles on this task, including 16S rRNA gene analysis and some alignment-based or alignment-free methods on metagenomic data. Alignment-free methods have the advantage of not depending on known genome annotations and therefore have high potential in studying complicated microbiomes. However, the existing alignment-free methods are all based on unsupervised learning strategy (e.g., PCA or hierarchical clustering). These types of methods are powerful in revealing major similarities and grouping relations between microbiome samples, but cannot be applied for discriminating predefined classes of interest which might not be the dominating assortment in the data. Supervised classification is needed in the latter scenario, with the goal of classifying samples into predefined classes and finding the features that can discriminate the classes. The effectiveness of supervised classification with alignment-based features on metagenomic data have been shown in some recent studies. The application of alignment-free supervised classification methods on metagenome data has not been well explored yet. We developed a method for this task using k-tuple frequencies as features counted directly from metagenome short reads and the R-SVM (Recursive SVM) for feature selection and classification. We tested our method on a simulation dataset, a real dataset composed of several known genomes, and a real metagenome NGS short reads dataset. Experiments on simulated data showed that the method can classify the classes almost perfectly and can recover major sequence signatures that distinguish the two classes. On the real human gut metagenome data, the method can discriminate samples of inflammatory bowel disease (IBD) patients from control samples with high accuracy, which cannot be separated when comparing the samples with unsupervised clustering approaches. The proposed alignment-free supervised classification method can perform well in discriminating of metagenomic samples of predefined classes and in selecting characteristic sequence features for the discrimination. This study shows as an example on the feasibility of using metagenome sequence features of microbiomes on human bodies to study specific human health conditions using supervised machine learning methods." @default.
- W1963994909 created "2016-06-24" @default.
- W1963994909 creator A5043710350 @default.
- W1963994909 creator A5081242795 @default.
- W1963994909 date "2013-01-01" @default.
- W1963994909 modified "2023-10-09" @default.
- W1963994909 title "Alignment-free supervised classification of metagenomes by recursive SVM" @default.
- W1963994909 cites W1811186957 @default.
- W1963994909 cites W1971415551 @default.
- W1963994909 cites W1981006823 @default.
- W1963994909 cites W1988925586 @default.
- W1963994909 cites W1989889539 @default.
- W1963994909 cites W1998490921 @default.
- W1963994909 cites W2017529960 @default.
- W1963994909 cites W2028090679 @default.
- W1963994909 cites W2028799480 @default.
- W1963994909 cites W2034285706 @default.
- W1963994909 cites W2047208232 @default.
- W1963994909 cites W2047774330 @default.
- W1963994909 cites W2048818637 @default.
- W1963994909 cites W2057215967 @default.
- W1963994909 cites W2059471906 @default.
- W1963994909 cites W2066452478 @default.
- W1963994909 cites W2067295645 @default.
- W1963994909 cites W2073332363 @default.
- W1963994909 cites W2081676964 @default.
- W1963994909 cites W2082521980 @default.
- W1963994909 cites W2090925778 @default.
- W1963994909 cites W2093830129 @default.
- W1963994909 cites W2093891969 @default.
- W1963994909 cites W2099117570 @default.
- W1963994909 cites W2112874908 @default.
- W1963994909 cites W2114392707 @default.
- W1963994909 cites W2117595393 @default.
- W1963994909 cites W2118142823 @default.
- W1963994909 cites W2118903236 @default.
- W1963994909 cites W2120083902 @default.
- W1963994909 cites W2120584152 @default.
- W1963994909 cites W2125826054 @default.
- W1963994909 cites W2127415562 @default.
- W1963994909 cites W2137896807 @default.
- W1963994909 cites W2145336165 @default.
- W1963994909 cites W2145853890 @default.
- W1963994909 cites W2149573313 @default.
- W1963994909 cites W2152246397 @default.
- W1963994909 cites W2154071138 @default.
- W1963994909 cites W2159175617 @default.
- W1963994909 cites W2162315106 @default.
- W1963994909 cites W2170951896 @default.
- W1963994909 doi "https://doi.org/10.1186/1471-2164-14-641" @default.
- W1963994909 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3849074" @default.
- W1963994909 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24053649" @default.
- W1963994909 hasPublicationYear "2013" @default.
- W1963994909 type Work @default.
- W1963994909 sameAs 1963994909 @default.
- W1963994909 citedByCount "30" @default.
- W1963994909 countsByYear W19639949092015 @default.
- W1963994909 countsByYear W19639949092016 @default.
- W1963994909 countsByYear W19639949092017 @default.
- W1963994909 countsByYear W19639949092018 @default.
- W1963994909 countsByYear W19639949092019 @default.
- W1963994909 countsByYear W19639949092020 @default.
- W1963994909 countsByYear W19639949092021 @default.
- W1963994909 countsByYear W19639949092022 @default.
- W1963994909 crossrefType "journal-article" @default.
- W1963994909 hasAuthorship W1963994909A5043710350 @default.
- W1963994909 hasAuthorship W1963994909A5081242795 @default.
- W1963994909 hasBestOaLocation W19639949091 @default.
- W1963994909 hasConcept C104317684 @default.
- W1963994909 hasConcept C119857082 @default.
- W1963994909 hasConcept C12267149 @default.
- W1963994909 hasConcept C124101348 @default.
- W1963994909 hasConcept C136389625 @default.
- W1963994909 hasConcept C143121216 @default.
- W1963994909 hasConcept C148483581 @default.
- W1963994909 hasConcept C15151743 @default.
- W1963994909 hasConcept C153180895 @default.
- W1963994909 hasConcept C154945302 @default.
- W1963994909 hasConcept C190944805 @default.
- W1963994909 hasConcept C41008148 @default.
- W1963994909 hasConcept C50644808 @default.
- W1963994909 hasConcept C54355233 @default.
- W1963994909 hasConcept C60644358 @default.
- W1963994909 hasConcept C70721500 @default.
- W1963994909 hasConcept C73555534 @default.
- W1963994909 hasConcept C86803240 @default.
- W1963994909 hasConcept C92835128 @default.
- W1963994909 hasConceptScore W1963994909C104317684 @default.
- W1963994909 hasConceptScore W1963994909C119857082 @default.
- W1963994909 hasConceptScore W1963994909C12267149 @default.
- W1963994909 hasConceptScore W1963994909C124101348 @default.
- W1963994909 hasConceptScore W1963994909C136389625 @default.
- W1963994909 hasConceptScore W1963994909C143121216 @default.
- W1963994909 hasConceptScore W1963994909C148483581 @default.
- W1963994909 hasConceptScore W1963994909C15151743 @default.
- W1963994909 hasConceptScore W1963994909C153180895 @default.
- W1963994909 hasConceptScore W1963994909C154945302 @default.
- W1963994909 hasConceptScore W1963994909C190944805 @default.