Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964072811> ?p ?o ?g. }
- W1964072811 endingPage "219" @default.
- W1964072811 startingPage "186" @default.
- W1964072811 abstract "Growth mixture modeling (GMM) represents a technique that is designed to capture change over time for unobserved subgroups (or latent classes) that exhibit qualitatively different patterns of growth. The aim of the current article was to explore the impact of latent class separation (i.e., how similar growth trajectories are across latent classes) on GMM performance. Several estimation conditions were compared: maximum likelihood via the expectation maximization (EM) algorithm and the Bayesian framework implementing diffuse priors, accurate informative priors, weakly informative priors, data-driven informative priors, priors reflecting partial-knowledge of parameters, and inaccurate (but informative) priors. The main goal was to provide insight about the optimal estimation condition under different degrees of latent class separation for GMM. Results indicated that optimal parameter recovery was obtained though the Bayesian approach using accurate informative priors, and partial-knowledge priors showed promise for the recovery of the growth trajectory parameters. Maximum likelihood and the remaining Bayesian estimation conditions yielded poor parameter recovery for the latent class proportions and the growth trajectories." @default.
- W1964072811 created "2016-06-24" @default.
- W1964072811 creator A5036027681 @default.
- W1964072811 date "2013-06-01" @default.
- W1964072811 modified "2023-10-16" @default.
- W1964072811 title "Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation." @default.
- W1964072811 cites W130037070 @default.
- W1964072811 cites W130596010 @default.
- W1964072811 cites W1579271636 @default.
- W1964072811 cites W1660594717 @default.
- W1964072811 cites W1771846642 @default.
- W1964072811 cites W1974919409 @default.
- W1964072811 cites W1985321835 @default.
- W1964072811 cites W1989470692 @default.
- W1964072811 cites W2001888581 @default.
- W1964072811 cites W2010959895 @default.
- W1964072811 cites W2019486793 @default.
- W1964072811 cites W2027445478 @default.
- W1964072811 cites W2029035844 @default.
- W1964072811 cites W2032201441 @default.
- W1964072811 cites W2035756456 @default.
- W1964072811 cites W2041960457 @default.
- W1964072811 cites W2045656233 @default.
- W1964072811 cites W2051799078 @default.
- W1964072811 cites W2051961221 @default.
- W1964072811 cites W2057964179 @default.
- W1964072811 cites W2064157768 @default.
- W1964072811 cites W2067750885 @default.
- W1964072811 cites W2069068394 @default.
- W1964072811 cites W2072221629 @default.
- W1964072811 cites W2081302629 @default.
- W1964072811 cites W2084223473 @default.
- W1964072811 cites W2087101057 @default.
- W1964072811 cites W2090330784 @default.
- W1964072811 cites W2094358882 @default.
- W1964072811 cites W2096878708 @default.
- W1964072811 cites W2114909733 @default.
- W1964072811 cites W2115042031 @default.
- W1964072811 cites W2121297553 @default.
- W1964072811 cites W2124607502 @default.
- W1964072811 cites W2130253300 @default.
- W1964072811 cites W2130416410 @default.
- W1964072811 cites W2132330850 @default.
- W1964072811 cites W2136141791 @default.
- W1964072811 cites W2139606141 @default.
- W1964072811 cites W2141770651 @default.
- W1964072811 cites W2142499192 @default.
- W1964072811 cites W2144583605 @default.
- W1964072811 cites W2146177007 @default.
- W1964072811 cites W2148534890 @default.
- W1964072811 cites W2150921722 @default.
- W1964072811 cites W2157335584 @default.
- W1964072811 cites W2162946017 @default.
- W1964072811 cites W2168331993 @default.
- W1964072811 cites W2170073305 @default.
- W1964072811 cites W2187292813 @default.
- W1964072811 cites W3005137936 @default.
- W1964072811 cites W3177186915 @default.
- W1964072811 cites W45547521 @default.
- W1964072811 cites W614811974 @default.
- W1964072811 doi "https://doi.org/10.1037/a0031609" @default.
- W1964072811 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23527607" @default.
- W1964072811 hasPublicationYear "2013" @default.
- W1964072811 type Work @default.
- W1964072811 sameAs 1964072811 @default.
- W1964072811 citedByCount "91" @default.
- W1964072811 countsByYear W19640728112014 @default.
- W1964072811 countsByYear W19640728112015 @default.
- W1964072811 countsByYear W19640728112016 @default.
- W1964072811 countsByYear W19640728112017 @default.
- W1964072811 countsByYear W19640728112018 @default.
- W1964072811 countsByYear W19640728112019 @default.
- W1964072811 countsByYear W19640728112020 @default.
- W1964072811 countsByYear W19640728112021 @default.
- W1964072811 countsByYear W19640728112022 @default.
- W1964072811 countsByYear W19640728112023 @default.
- W1964072811 crossrefType "journal-article" @default.
- W1964072811 hasAuthorship W1964072811A5036027681 @default.
- W1964072811 hasBestOaLocation W19640728112 @default.
- W1964072811 hasConcept C105795698 @default.
- W1964072811 hasConcept C107673813 @default.
- W1964072811 hasConcept C149782125 @default.
- W1964072811 hasConcept C153180895 @default.
- W1964072811 hasConcept C154945302 @default.
- W1964072811 hasConcept C160234255 @default.
- W1964072811 hasConcept C162376815 @default.
- W1964072811 hasConcept C177769412 @default.
- W1964072811 hasConcept C182081679 @default.
- W1964072811 hasConcept C33923547 @default.
- W1964072811 hasConcept C41008148 @default.
- W1964072811 hasConcept C49781872 @default.
- W1964072811 hasConcept C61224824 @default.
- W1964072811 hasConcept C68022304 @default.
- W1964072811 hasConcept C70727504 @default.
- W1964072811 hasConceptScore W1964072811C105795698 @default.
- W1964072811 hasConceptScore W1964072811C107673813 @default.
- W1964072811 hasConceptScore W1964072811C149782125 @default.
- W1964072811 hasConceptScore W1964072811C153180895 @default.