Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964172433> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1964172433 endingPage "17" @default.
- W1964172433 startingPage "1" @default.
- W1964172433 abstract "Recent studies show that soil animal count data are characterized by the presence of excess zeros and overdispersion, which violate the assumptions of standard statistical tests. Despite this, analyses have consisted of mainly non-parametric tests and log-normal least square regression (i.e. ANOVA). Failure to accommodate zero inflation in count data can result in biased estimation of ecological effects jeopardizing the integrity of the scientific inference. The objective of this study was to compare statistical models for the analysis of soil animal count data and suggest appropriate methods for estimating abundance. The log-normal regression model, linear mixed model (LMM), standard Poisson, Poisson with correction for overdispersion (PCO), negative binomial distribution (NBD), the zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models were compared using 12 count data sets of earthworms, millipedes, centipedes, beetles, ants and termites from soils under the miombo woodland and agroforestry systems in eastern Zambia. The NBD with covariates gave a better description of the data in nine out of 12 cases than did the standard Poisson, ZIP and ZINB. The ZIP and ZINB models with covariates gave the best description of earthworm counts from the miombo and millipede counts from agroforestry, respectively. In all cases, the ZIP model was better than the standard Poisson model. The ZINB was inferior to the NBD except for earthworm counts from the miombo and millipede counts in agroforestry. Significance tests based on the PCO, ZIP, NBD and ZINB were more conservative than those based on the standard Poisson model. The 95% confidence intervals computed using the PCO, ZIP, NBD and ZINB were also wider than those computed using least squares, LMM and assuming Poisson distribution. It is concluded that for the comparison among habitat types, land-use categories or treatments, the NBD, ZIP and ZINB perform better than the log-normal and Poisson models. Considering the excess-zero problem and significant deviation of soil animal counts from the assumptions of normality and homoscedcity, the log-normal regression model is inappropriate. Therefore, routine application of the log-normal regression model and non-parametric tests for analysis of soil animal count data with many zeros should be discouraged." @default.
- W1964172433 created "2016-06-24" @default.
- W1964172433 creator A5007778155 @default.
- W1964172433 date "2008-06-01" @default.
- W1964172433 modified "2023-10-16" @default.
- W1964172433 title "The excess-zero problem in soil animal count data and choice of appropriate models for statistical inference" @default.
- W1964172433 cites W1968371014 @default.
- W1964172433 cites W1982142842 @default.
- W1964172433 cites W2008736637 @default.
- W1964172433 cites W2024764857 @default.
- W1964172433 cites W2026875721 @default.
- W1964172433 cites W2045075679 @default.
- W1964172433 cites W2085309210 @default.
- W1964172433 cites W2085316301 @default.
- W1964172433 cites W2090268734 @default.
- W1964172433 cites W2101846955 @default.
- W1964172433 cites W2109844396 @default.
- W1964172433 cites W2116665868 @default.
- W1964172433 cites W2119294216 @default.
- W1964172433 cites W2119634512 @default.
- W1964172433 cites W2123812430 @default.
- W1964172433 cites W2138074060 @default.
- W1964172433 cites W2146081698 @default.
- W1964172433 cites W2149914006 @default.
- W1964172433 cites W2153697820 @default.
- W1964172433 cites W2160868401 @default.
- W1964172433 cites W2171116450 @default.
- W1964172433 cites W319746435 @default.
- W1964172433 doi "https://doi.org/10.1016/j.pedobi.2007.11.003" @default.
- W1964172433 hasPublicationYear "2008" @default.
- W1964172433 type Work @default.
- W1964172433 sameAs 1964172433 @default.
- W1964172433 citedByCount "56" @default.
- W1964172433 countsByYear W19641724332012 @default.
- W1964172433 countsByYear W19641724332013 @default.
- W1964172433 countsByYear W19641724332014 @default.
- W1964172433 countsByYear W19641724332015 @default.
- W1964172433 countsByYear W19641724332016 @default.
- W1964172433 countsByYear W19641724332017 @default.
- W1964172433 countsByYear W19641724332018 @default.
- W1964172433 countsByYear W19641724332019 @default.
- W1964172433 countsByYear W19641724332020 @default.
- W1964172433 countsByYear W19641724332021 @default.
- W1964172433 countsByYear W19641724332023 @default.
- W1964172433 crossrefType "journal-article" @default.
- W1964172433 hasAuthorship W1964172433A5007778155 @default.
- W1964172433 hasConcept C100906024 @default.
- W1964172433 hasConcept C105795698 @default.
- W1964172433 hasConcept C117236510 @default.
- W1964172433 hasConcept C119043178 @default.
- W1964172433 hasConcept C134261354 @default.
- W1964172433 hasConcept C144024400 @default.
- W1964172433 hasConcept C149923435 @default.
- W1964172433 hasConcept C18903297 @default.
- W1964172433 hasConcept C199335787 @default.
- W1964172433 hasConcept C2908647359 @default.
- W1964172433 hasConcept C33643355 @default.
- W1964172433 hasConcept C33923547 @default.
- W1964172433 hasConcept C73269764 @default.
- W1964172433 hasConcept C86803240 @default.
- W1964172433 hasConcept C88721176 @default.
- W1964172433 hasConcept C91025261 @default.
- W1964172433 hasConceptScore W1964172433C100906024 @default.
- W1964172433 hasConceptScore W1964172433C105795698 @default.
- W1964172433 hasConceptScore W1964172433C117236510 @default.
- W1964172433 hasConceptScore W1964172433C119043178 @default.
- W1964172433 hasConceptScore W1964172433C134261354 @default.
- W1964172433 hasConceptScore W1964172433C144024400 @default.
- W1964172433 hasConceptScore W1964172433C149923435 @default.
- W1964172433 hasConceptScore W1964172433C18903297 @default.
- W1964172433 hasConceptScore W1964172433C199335787 @default.
- W1964172433 hasConceptScore W1964172433C2908647359 @default.
- W1964172433 hasConceptScore W1964172433C33643355 @default.
- W1964172433 hasConceptScore W1964172433C33923547 @default.
- W1964172433 hasConceptScore W1964172433C73269764 @default.
- W1964172433 hasConceptScore W1964172433C86803240 @default.
- W1964172433 hasConceptScore W1964172433C88721176 @default.
- W1964172433 hasConceptScore W1964172433C91025261 @default.
- W1964172433 hasIssue "1" @default.
- W1964172433 hasLocation W19641724331 @default.
- W1964172433 hasOpenAccess W1964172433 @default.
- W1964172433 hasPrimaryLocation W19641724331 @default.
- W1964172433 hasRelatedWork W1562077703 @default.
- W1964172433 hasRelatedWork W2047828157 @default.
- W1964172433 hasRelatedWork W2127985786 @default.
- W1964172433 hasRelatedWork W2159796125 @default.
- W1964172433 hasRelatedWork W2189104843 @default.
- W1964172433 hasRelatedWork W2556931687 @default.
- W1964172433 hasRelatedWork W2765416750 @default.
- W1964172433 hasRelatedWork W2971731486 @default.
- W1964172433 hasRelatedWork W3165665316 @default.
- W1964172433 hasRelatedWork W3210390693 @default.
- W1964172433 hasVolume "52" @default.
- W1964172433 isParatext "false" @default.
- W1964172433 isRetracted "false" @default.
- W1964172433 magId "1964172433" @default.
- W1964172433 workType "article" @default.