Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964236716> ?p ?o ?g. }
- W1964236716 abstract "Exact analytical solutions to simplified cases of nonlinear debris avalanche model equations are necessary to calibrate numerical simulations of flow depth and velocity profiles on inclined surfaces. These problem-specific solutions provide important insight into the full behavior of the system. In this paper, we present some new analytical solutions for debris and avalanche flows and then compare these solutions with experimental data to measure their performance and determine their relevance. First, by combining the mass and momentum balance equations with a Bagnold rheology, a new and special kinematic wave equation is constructed in which the flux and the wave celerity are complex nonlinear functions of the pressure gradient and the flow depth itself. The new model can explain the mechanisms of wave advection and distortion, and the quasiasymptotic front bore observed in many natural and laboratory debris and granular flows. Exact time-dependent solutions for debris flow fronts and associated velocity profiles are then constructed. We also present a novel semiexact two-dimensional plane velocity field through the flow depth. Second, starting with the force balance between gravity, the pressure gradient, and Bagnold’s grain-inertia or macroviscous forces, we construct a simple and very special nonlinear ordinary differential equation to model the steady state debris front profile. An empirical pressure gradient enhancement factor is introduced to adequately stretch the flow front and properly model nonhydrostatic pressure in granular and debris avalanches. An exact solution in explicit form is constructed, and is expressed in terms of the Lambert–Euler omega function. Third, we consider rapid flows of frictional granular materials down a channel. The steady state mass and the momentum balance equations are combined together with the Coulomb friction law. The Chebyshev radicals are employed and the exact solutions are developed for the velocity profile and the debris depth. Similarly, Bagnold’s fluids are also used to construct alternative exact solutions. Many interesting and important aspects of all these exact solutions, their applications to real-flow situations, and the influence of model parameters are discussed in detail. These analytical solutions, although simple, compare very well with experimental data of debris flows, granular avalanches, and the wave tips of dam break flows. A new scaling law for Bagnold’s fluids is established to relate the settlement time of debris deposition. It is found analytically that the macroviscous fluid settles (comes to a standstill) considerably faster than the grain-inertia fluid, as manifested by dispersive pressure." @default.
- W1964236716 created "2016-06-24" @default.
- W1964236716 creator A5058620986 @default.
- W1964236716 date "2011-04-01" @default.
- W1964236716 modified "2023-09-26" @default.
- W1964236716 title "Some exact solutions for debris and avalanche flows" @default.
- W1964236716 cites W1526664449 @default.
- W1964236716 cites W1540985309 @default.
- W1964236716 cites W1564161272 @default.
- W1964236716 cites W1977326966 @default.
- W1964236716 cites W1995298664 @default.
- W1964236716 cites W2005219605 @default.
- W1964236716 cites W2008076987 @default.
- W1964236716 cites W2009499079 @default.
- W1964236716 cites W2012102142 @default.
- W1964236716 cites W2021447789 @default.
- W1964236716 cites W2022434757 @default.
- W1964236716 cites W2025501700 @default.
- W1964236716 cites W2027130327 @default.
- W1964236716 cites W2031324506 @default.
- W1964236716 cites W2046392635 @default.
- W1964236716 cites W2048969285 @default.
- W1964236716 cites W2063050805 @default.
- W1964236716 cites W2064692695 @default.
- W1964236716 cites W2068728923 @default.
- W1964236716 cites W2090472535 @default.
- W1964236716 cites W2094800197 @default.
- W1964236716 cites W2097033979 @default.
- W1964236716 cites W2097301590 @default.
- W1964236716 cites W2104004065 @default.
- W1964236716 cites W2108561350 @default.
- W1964236716 cites W2108927290 @default.
- W1964236716 cites W2109549515 @default.
- W1964236716 cites W2119578677 @default.
- W1964236716 cites W2120923020 @default.
- W1964236716 cites W2134712685 @default.
- W1964236716 cites W2139170886 @default.
- W1964236716 cites W2139417932 @default.
- W1964236716 cites W2150226578 @default.
- W1964236716 cites W2155731760 @default.
- W1964236716 cites W2161887403 @default.
- W1964236716 cites W2165618336 @default.
- W1964236716 cites W2169067603 @default.
- W1964236716 cites W2417621999 @default.
- W1964236716 cites W2985274514 @default.
- W1964236716 cites W3101198332 @default.
- W1964236716 cites W4229855922 @default.
- W1964236716 cites W4250523508 @default.
- W1964236716 doi "https://doi.org/10.1063/1.3570532" @default.
- W1964236716 hasPublicationYear "2011" @default.
- W1964236716 type Work @default.
- W1964236716 sameAs 1964236716 @default.
- W1964236716 citedByCount "77" @default.
- W1964236716 countsByYear W19642367162012 @default.
- W1964236716 countsByYear W19642367162013 @default.
- W1964236716 countsByYear W19642367162014 @default.
- W1964236716 countsByYear W19642367162015 @default.
- W1964236716 countsByYear W19642367162016 @default.
- W1964236716 countsByYear W19642367162017 @default.
- W1964236716 countsByYear W19642367162018 @default.
- W1964236716 countsByYear W19642367162019 @default.
- W1964236716 countsByYear W19642367162020 @default.
- W1964236716 countsByYear W19642367162021 @default.
- W1964236716 countsByYear W19642367162022 @default.
- W1964236716 countsByYear W19642367162023 @default.
- W1964236716 crossrefType "journal-article" @default.
- W1964236716 hasAuthorship W1964236716A5058620986 @default.
- W1964236716 hasConcept C10138342 @default.
- W1964236716 hasConcept C110407247 @default.
- W1964236716 hasConcept C111808769 @default.
- W1964236716 hasConcept C121332964 @default.
- W1964236716 hasConcept C153294291 @default.
- W1964236716 hasConcept C158622935 @default.
- W1964236716 hasConcept C162324750 @default.
- W1964236716 hasConcept C18903297 @default.
- W1964236716 hasConcept C2776023875 @default.
- W1964236716 hasConcept C38349280 @default.
- W1964236716 hasConcept C43978264 @default.
- W1964236716 hasConcept C50477045 @default.
- W1964236716 hasConcept C57879066 @default.
- W1964236716 hasConcept C60718061 @default.
- W1964236716 hasConcept C62520636 @default.
- W1964236716 hasConcept C74650414 @default.
- W1964236716 hasConcept C86803240 @default.
- W1964236716 hasConcept C98156149 @default.
- W1964236716 hasConceptScore W1964236716C10138342 @default.
- W1964236716 hasConceptScore W1964236716C110407247 @default.
- W1964236716 hasConceptScore W1964236716C111808769 @default.
- W1964236716 hasConceptScore W1964236716C121332964 @default.
- W1964236716 hasConceptScore W1964236716C153294291 @default.
- W1964236716 hasConceptScore W1964236716C158622935 @default.
- W1964236716 hasConceptScore W1964236716C162324750 @default.
- W1964236716 hasConceptScore W1964236716C18903297 @default.
- W1964236716 hasConceptScore W1964236716C2776023875 @default.
- W1964236716 hasConceptScore W1964236716C38349280 @default.
- W1964236716 hasConceptScore W1964236716C43978264 @default.
- W1964236716 hasConceptScore W1964236716C50477045 @default.
- W1964236716 hasConceptScore W1964236716C57879066 @default.
- W1964236716 hasConceptScore W1964236716C60718061 @default.
- W1964236716 hasConceptScore W1964236716C62520636 @default.