Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964351947> ?p ?o ?g. }
- W1964351947 endingPage "46" @default.
- W1964351947 startingPage "33" @default.
- W1964351947 abstract "Many population-based rare-variant (RV) association tests, which aggregate variants across a region, have been developed to analyze sequence data. A drawback of analyzing population-based data is that it is difficult to adequately control for population substructure and admixture, and spurious associations can occur. For RVs, this problem can be substantial, because the spectrum of rare variation can differ greatly between populations. A solution is to analyze parent-child trio data, by using the transmission disequilibrium test (TDT), which is robust to population substructure and admixture. We extended the TDT to test for RV associations using four commonly used methods. We demonstrate that for all RV-TDT methods, using proper analysis strategies, type I error is well-controlled even when there are high levels of population substructure or admixture. For trio data, unlike for population-based data, RV allele-counting association methods will lead to inflated type I errors. However type I errors can be properly controlled by obtaining p values empirically through haplotype permutation. The power of the RV-TDT methods was evaluated and compared to the analysis of case-control data with a number of genetic and disease models. The RV-TDT was also used to analyze exome data from 199 Simons Simplex Collection autism trios and an association was observed with variants in ABCA7. Given the problem of adequately controlling for population substructure and admixture in RV association studies and the growing number of sequence-based trio studies, the RV-TDT is extremely beneficial to elucidate the involvement of RVs in the etiology of complex traits. Many population-based rare-variant (RV) association tests, which aggregate variants across a region, have been developed to analyze sequence data. A drawback of analyzing population-based data is that it is difficult to adequately control for population substructure and admixture, and spurious associations can occur. For RVs, this problem can be substantial, because the spectrum of rare variation can differ greatly between populations. A solution is to analyze parent-child trio data, by using the transmission disequilibrium test (TDT), which is robust to population substructure and admixture. We extended the TDT to test for RV associations using four commonly used methods. We demonstrate that for all RV-TDT methods, using proper analysis strategies, type I error is well-controlled even when there are high levels of population substructure or admixture. For trio data, unlike for population-based data, RV allele-counting association methods will lead to inflated type I errors. However type I errors can be properly controlled by obtaining p values empirically through haplotype permutation. The power of the RV-TDT methods was evaluated and compared to the analysis of case-control data with a number of genetic and disease models. The RV-TDT was also used to analyze exome data from 199 Simons Simplex Collection autism trios and an association was observed with variants in ABCA7. Given the problem of adequately controlling for population substructure and admixture in RV association studies and the growing number of sequence-based trio studies, the RV-TDT is extremely beneficial to elucidate the involvement of RVs in the etiology of complex traits." @default.
- W1964351947 created "2016-06-24" @default.
- W1964351947 creator A5001833777 @default.
- W1964351947 creator A5005318156 @default.
- W1964351947 creator A5011688144 @default.
- W1964351947 creator A5014870107 @default.
- W1964351947 creator A5015578091 @default.
- W1964351947 creator A5024301767 @default.
- W1964351947 creator A5038571317 @default.
- W1964351947 creator A5052029446 @default.
- W1964351947 creator A5053710568 @default.
- W1964351947 creator A5078218872 @default.
- W1964351947 creator A5080042492 @default.
- W1964351947 creator A5085826245 @default.
- W1964351947 creator A5086460310 @default.
- W1964351947 date "2014-01-01" @default.
- W1964351947 modified "2023-10-03" @default.
- W1964351947 title "Rare-Variant Extensions of the Transmission Disequilibrium Test: Application to Autism Exome Sequence Data" @default.
- W1964351947 cites W1920357508 @default.
- W1964351947 cites W1964444099 @default.
- W1964351947 cites W1965442268 @default.
- W1964351947 cites W1968776100 @default.
- W1964351947 cites W1969063901 @default.
- W1964351947 cites W1970848271 @default.
- W1964351947 cites W1976861043 @default.
- W1964351947 cites W1977673229 @default.
- W1964351947 cites W1982220354 @default.
- W1964351947 cites W1984068087 @default.
- W1964351947 cites W1987754412 @default.
- W1964351947 cites W1989168127 @default.
- W1964351947 cites W2003958717 @default.
- W1964351947 cites W2009132217 @default.
- W1964351947 cites W2012768252 @default.
- W1964351947 cites W2019483502 @default.
- W1964351947 cites W2029387902 @default.
- W1964351947 cites W2031082289 @default.
- W1964351947 cites W2031827634 @default.
- W1964351947 cites W2038015622 @default.
- W1964351947 cites W2039299884 @default.
- W1964351947 cites W2042982067 @default.
- W1964351947 cites W2044394153 @default.
- W1964351947 cites W2050756466 @default.
- W1964351947 cites W2054078914 @default.
- W1964351947 cites W2054283651 @default.
- W1964351947 cites W2054295855 @default.
- W1964351947 cites W2054708422 @default.
- W1964351947 cites W2058148991 @default.
- W1964351947 cites W2059543915 @default.
- W1964351947 cites W2059744149 @default.
- W1964351947 cites W2061539393 @default.
- W1964351947 cites W2070984858 @default.
- W1964351947 cites W2073154969 @default.
- W1964351947 cites W2081037263 @default.
- W1964351947 cites W2082036307 @default.
- W1964351947 cites W2084413241 @default.
- W1964351947 cites W2091583677 @default.
- W1964351947 cites W2093636770 @default.
- W1964351947 cites W2096791516 @default.
- W1964351947 cites W2096816602 @default.
- W1964351947 cites W2096890220 @default.
- W1964351947 cites W2097349182 @default.
- W1964351947 cites W2118527114 @default.
- W1964351947 cites W2119180969 @default.
- W1964351947 cites W2138345444 @default.
- W1964351947 cites W2145210308 @default.
- W1964351947 cites W2146128933 @default.
- W1964351947 cites W2148811088 @default.
- W1964351947 cites W2150786121 @default.
- W1964351947 cites W2152234131 @default.
- W1964351947 cites W2153899794 @default.
- W1964351947 cites W2155547633 @default.
- W1964351947 cites W2157752701 @default.
- W1964351947 cites W2161633633 @default.
- W1964351947 cites W2170415197 @default.
- W1964351947 cites W2615005980 @default.
- W1964351947 doi "https://doi.org/10.1016/j.ajhg.2013.11.021" @default.
- W1964351947 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3882934" @default.
- W1964351947 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24360806" @default.
- W1964351947 hasPublicationYear "2014" @default.
- W1964351947 type Work @default.
- W1964351947 sameAs 1964351947 @default.
- W1964351947 citedByCount "67" @default.
- W1964351947 countsByYear W19643519472014 @default.
- W1964351947 countsByYear W19643519472015 @default.
- W1964351947 countsByYear W19643519472016 @default.
- W1964351947 countsByYear W19643519472017 @default.
- W1964351947 countsByYear W19643519472018 @default.
- W1964351947 countsByYear W19643519472019 @default.
- W1964351947 countsByYear W19643519472020 @default.
- W1964351947 countsByYear W19643519472021 @default.
- W1964351947 countsByYear W19643519472022 @default.
- W1964351947 countsByYear W19643519472023 @default.
- W1964351947 crossrefType "journal-article" @default.
- W1964351947 hasAuthorship W1964351947A5001833777 @default.
- W1964351947 hasAuthorship W1964351947A5005318156 @default.
- W1964351947 hasAuthorship W1964351947A5011688144 @default.
- W1964351947 hasAuthorship W1964351947A5014870107 @default.
- W1964351947 hasAuthorship W1964351947A5015578091 @default.