Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964541437> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W1964541437 endingPage "6684" @default.
- W1964541437 startingPage "6668" @default.
- W1964541437 abstract "In this paper we present several expert systems that predict the class identity of the modeled compounds, based on a preprocessed spectral database. The expert systems were built using Artificial Neural Networks (ANN) and are designed to predict if an unknown compound has the toxicological activity of amphetamines (stimulant and hallucinogen), or whether it is a nonamphetamine. In attempts to circumvent the laws controlling drugs of abuse, new chemical structures are very frequently introduced on the black market. They are obtained by slightly modifying the controlled molecular structures by adding or changing substituents at various positions on the banned molecules. As a result, no substance similar to those forming a prohibited class may be used nowadays, even if it has not been specifically listed. Therefore, reliable, fast and accessible systems capable of modeling and then identifying similarities at molecular level, are highly needed for epidemiological, clinical, and forensic purposes. In order to obtain the expert systems, we have preprocessed a concatenated spectral database, representing the GC-FTIR (gas chromatography-Fourier transform infrared spectrometry) and GC-MS (gas chromatography-mass spectrometry) spectra of 103 forensic compounds. The database was used as input for a Principal Component Analysis (PCA). The scores of the forensic compounds on the main principal components (PCs) were then used as inputs for the ANN systems. We have built eight PC-ANN systems (principal component analysis coupled with artificial neural network) with a different number of input variables: 15 PCs, 16 PCs, 17 PCs, 18 PCs, 19 PCs, 20 PCs, 21 PCs and 22 PCs. The best expert system was found to be the ANN network built with 18 PCs, which accounts for an explained variance of 77%. This expert system has the best sensitivity (a rate of classification C = 100% and a rate of true positives TP = 100%), as well as a good selectivity (a rate of true negatives TN = 92.77%). A comparative analysis of the validation results of all expert systems is presented, and the input variables with the highest discrimination power are discussed." @default.
- W1964541437 created "2016-06-24" @default.
- W1964541437 creator A5035243145 @default.
- W1964541437 creator A5055637570 @default.
- W1964541437 creator A5080131782 @default.
- W1964541437 date "2011-10-11" @default.
- W1964541437 modified "2023-10-18" @default.
- W1964541437 title "Principal Component Analysis Coupled with Artificial Neural Networks—A Combined Technique Classifying Small Molecular Structures Using a Concatenated Spectral Database" @default.
- W1964541437 cites W1969304513 @default.
- W1964541437 cites W1978508948 @default.
- W1964541437 cites W1980957196 @default.
- W1964541437 cites W1999798870 @default.
- W1964541437 cites W2014644185 @default.
- W1964541437 cites W2014892852 @default.
- W1964541437 cites W2017786673 @default.
- W1964541437 cites W2025159182 @default.
- W1964541437 cites W2049844354 @default.
- W1964541437 cites W2054329949 @default.
- W1964541437 cites W2055548936 @default.
- W1964541437 cites W2070308878 @default.
- W1964541437 cites W2073324648 @default.
- W1964541437 cites W2080662196 @default.
- W1964541437 cites W2093358797 @default.
- W1964541437 cites W2096180735 @default.
- W1964541437 cites W2149672940 @default.
- W1964541437 cites W2155410547 @default.
- W1964541437 doi "https://doi.org/10.3390/ijms12106668" @default.
- W1964541437 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3211002" @default.
- W1964541437 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22072911" @default.
- W1964541437 hasPublicationYear "2011" @default.
- W1964541437 type Work @default.
- W1964541437 sameAs 1964541437 @default.
- W1964541437 citedByCount "21" @default.
- W1964541437 countsByYear W19645414372012 @default.
- W1964541437 countsByYear W19645414372014 @default.
- W1964541437 countsByYear W19645414372015 @default.
- W1964541437 countsByYear W19645414372016 @default.
- W1964541437 countsByYear W19645414372017 @default.
- W1964541437 countsByYear W19645414372019 @default.
- W1964541437 countsByYear W19645414372020 @default.
- W1964541437 countsByYear W19645414372021 @default.
- W1964541437 countsByYear W19645414372022 @default.
- W1964541437 crossrefType "journal-article" @default.
- W1964541437 hasAuthorship W1964541437A5035243145 @default.
- W1964541437 hasAuthorship W1964541437A5055637570 @default.
- W1964541437 hasAuthorship W1964541437A5080131782 @default.
- W1964541437 hasBestOaLocation W19645414371 @default.
- W1964541437 hasConcept C124101348 @default.
- W1964541437 hasConcept C153180895 @default.
- W1964541437 hasConcept C154945302 @default.
- W1964541437 hasConcept C186060115 @default.
- W1964541437 hasConcept C27438332 @default.
- W1964541437 hasConcept C41008148 @default.
- W1964541437 hasConcept C50644808 @default.
- W1964541437 hasConcept C58328972 @default.
- W1964541437 hasConcept C77088390 @default.
- W1964541437 hasConcept C86803240 @default.
- W1964541437 hasConceptScore W1964541437C124101348 @default.
- W1964541437 hasConceptScore W1964541437C153180895 @default.
- W1964541437 hasConceptScore W1964541437C154945302 @default.
- W1964541437 hasConceptScore W1964541437C186060115 @default.
- W1964541437 hasConceptScore W1964541437C27438332 @default.
- W1964541437 hasConceptScore W1964541437C41008148 @default.
- W1964541437 hasConceptScore W1964541437C50644808 @default.
- W1964541437 hasConceptScore W1964541437C58328972 @default.
- W1964541437 hasConceptScore W1964541437C77088390 @default.
- W1964541437 hasConceptScore W1964541437C86803240 @default.
- W1964541437 hasIssue "10" @default.
- W1964541437 hasLocation W19645414371 @default.
- W1964541437 hasLocation W19645414372 @default.
- W1964541437 hasLocation W19645414373 @default.
- W1964541437 hasLocation W19645414374 @default.
- W1964541437 hasOpenAccess W1964541437 @default.
- W1964541437 hasPrimaryLocation W19645414371 @default.
- W1964541437 hasRelatedWork W2085553065 @default.
- W1964541437 hasRelatedWork W2114966906 @default.
- W1964541437 hasRelatedWork W2157903613 @default.
- W1964541437 hasRelatedWork W2367227827 @default.
- W1964541437 hasRelatedWork W2380927352 @default.
- W1964541437 hasRelatedWork W2381598752 @default.
- W1964541437 hasRelatedWork W3048981730 @default.
- W1964541437 hasRelatedWork W3178621026 @default.
- W1964541437 hasRelatedWork W4211209597 @default.
- W1964541437 hasRelatedWork W2137598809 @default.
- W1964541437 hasVolume "12" @default.
- W1964541437 isParatext "false" @default.
- W1964541437 isRetracted "false" @default.
- W1964541437 magId "1964541437" @default.
- W1964541437 workType "article" @default.