Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964598071> ?p ?o ?g. }
- W1964598071 endingPage "184109" @default.
- W1964598071 startingPage "184109" @default.
- W1964598071 abstract "Finding informative low-dimensional descriptions of high-dimensional simulation data (like the ones arising in molecular dynamics or kinetic Monte Carlo simulations of physical and chemical processes) is crucial to understanding physical phenomena, and can also dramatically assist in accelerating the simulations themselves. In this paper, we discuss and illustrate the use of nonlinear intrinsic variables (NIV) in the mining of high-dimensional multiscale simulation data. In particular, we focus on the way NIV allows us to functionally merge different simulation ensembles, and different partial observations of these ensembles, as well as to infer variables not explicitly measured. The approach relies on certain simple features of the underlying process variability to filter out measurement noise and systematically recover a unique reference coordinate frame. We illustrate the approach through two distinct sets of atomistic simulations: a stochastic simulation of an enzyme reaction network exhibiting both fast and slow time scales, and a molecular dynamics simulation of alanine dipeptide in explicit water." @default.
- W1964598071 created "2016-06-24" @default.
- W1964598071 creator A5020330914 @default.
- W1964598071 creator A5033736096 @default.
- W1964598071 creator A5036566464 @default.
- W1964598071 creator A5050670260 @default.
- W1964598071 creator A5081833931 @default.
- W1964598071 date "2013-11-14" @default.
- W1964598071 modified "2023-09-25" @default.
- W1964598071 title "Nonlinear intrinsic variables and state reconstruction in multiscale simulations" @default.
- W1964598071 cites W1971725855 @default.
- W1964598071 cites W1972265435 @default.
- W1964598071 cites W1976499671 @default.
- W1964598071 cites W1990242519 @default.
- W1964598071 cites W1994941561 @default.
- W1964598071 cites W2001141328 @default.
- W1964598071 cites W2004094140 @default.
- W1964598071 cites W2006554089 @default.
- W1964598071 cites W2017370697 @default.
- W1964598071 cites W2017698480 @default.
- W1964598071 cites W2023083241 @default.
- W1964598071 cites W2023921624 @default.
- W1964598071 cites W2024697317 @default.
- W1964598071 cites W2024724083 @default.
- W1964598071 cites W2027384625 @default.
- W1964598071 cites W2035687084 @default.
- W1964598071 cites W2037189338 @default.
- W1964598071 cites W2040188179 @default.
- W1964598071 cites W2046451925 @default.
- W1964598071 cites W2051116535 @default.
- W1964598071 cites W2051864856 @default.
- W1964598071 cites W2053186076 @default.
- W1964598071 cites W2056894411 @default.
- W1964598071 cites W2060619169 @default.
- W1964598071 cites W2069123478 @default.
- W1964598071 cites W2090857812 @default.
- W1964598071 cites W2097308346 @default.
- W1964598071 cites W2097469960 @default.
- W1964598071 cites W2098754649 @default.
- W1964598071 cites W2103504761 @default.
- W1964598071 cites W2106140689 @default.
- W1964598071 cites W2108759471 @default.
- W1964598071 cites W2117684310 @default.
- W1964598071 cites W2130390906 @default.
- W1964598071 cites W2155418451 @default.
- W1964598071 cites W2156618588 @default.
- W1964598071 cites W2156838815 @default.
- W1964598071 cites W2171695688 @default.
- W1964598071 cites W2294576049 @default.
- W1964598071 cites W3022114093 @default.
- W1964598071 cites W3099514962 @default.
- W1964598071 cites W4213367101 @default.
- W1964598071 doi "https://doi.org/10.1063/1.4828457" @default.
- W1964598071 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24320256" @default.
- W1964598071 hasPublicationYear "2013" @default.
- W1964598071 type Work @default.
- W1964598071 sameAs 1964598071 @default.
- W1964598071 citedByCount "35" @default.
- W1964598071 countsByYear W19645980712013 @default.
- W1964598071 countsByYear W19645980712014 @default.
- W1964598071 countsByYear W19645980712015 @default.
- W1964598071 countsByYear W19645980712016 @default.
- W1964598071 countsByYear W19645980712017 @default.
- W1964598071 countsByYear W19645980712018 @default.
- W1964598071 countsByYear W19645980712019 @default.
- W1964598071 countsByYear W19645980712020 @default.
- W1964598071 countsByYear W19645980712022 @default.
- W1964598071 countsByYear W19645980712023 @default.
- W1964598071 crossrefType "journal-article" @default.
- W1964598071 hasAuthorship W1964598071A5020330914 @default.
- W1964598071 hasAuthorship W1964598071A5033736096 @default.
- W1964598071 hasAuthorship W1964598071A5036566464 @default.
- W1964598071 hasAuthorship W1964598071A5050670260 @default.
- W1964598071 hasAuthorship W1964598071A5081833931 @default.
- W1964598071 hasBestOaLocation W19645980712 @default.
- W1964598071 hasConcept C105795698 @default.
- W1964598071 hasConcept C121332964 @default.
- W1964598071 hasConcept C121864883 @default.
- W1964598071 hasConcept C129537906 @default.
- W1964598071 hasConcept C158622935 @default.
- W1964598071 hasConcept C19499675 @default.
- W1964598071 hasConcept C197129107 @default.
- W1964598071 hasConcept C23123220 @default.
- W1964598071 hasConcept C25915931 @default.
- W1964598071 hasConcept C33923547 @default.
- W1964598071 hasConcept C41008148 @default.
- W1964598071 hasConcept C59593255 @default.
- W1964598071 hasConcept C62520636 @default.
- W1964598071 hasConcept C97355855 @default.
- W1964598071 hasConceptScore W1964598071C105795698 @default.
- W1964598071 hasConceptScore W1964598071C121332964 @default.
- W1964598071 hasConceptScore W1964598071C121864883 @default.
- W1964598071 hasConceptScore W1964598071C129537906 @default.
- W1964598071 hasConceptScore W1964598071C158622935 @default.
- W1964598071 hasConceptScore W1964598071C19499675 @default.
- W1964598071 hasConceptScore W1964598071C197129107 @default.
- W1964598071 hasConceptScore W1964598071C23123220 @default.
- W1964598071 hasConceptScore W1964598071C25915931 @default.