Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964608748> ?p ?o ?g. }
- W1964608748 abstract "The authors report a new and potentially widely applicable method for the chemical vapor deposition (CVD) of films with a superconformal thickness profile in recessed features, i.e., the rate of growth increases with depth away from the opening. Provided that the aspect ratio of the feature is not too large, deposition initially affords a “V” shaped profile; continued deposition eventually fills the feature without leaving a void or seam of low-density material along the centerline. Superconformal deposition occurs under the following set of conditions: (1) growth involves two coreactants; (2) the deposition rate depends directly on the surface concentrations of both coreactants; (3) the molecular diffusivities of the coreactants are different; and (4) the partial pressures of the coreactants are chosen such that the surface coverage of the more rapidly diffusing coreactant is relatively small, and therefore rate-limiting, near the opening. The latter condition can be fulfilled if the more slowly diffusing coreactant is employed in excess or has an intrinsically higher sticking coefficient. Under these circumstances, the deposition rate will increase deeper in the feature for the following reason: the pressure of the slowly diffusing coreactant necessarily drops more quickly with depth than that of the rapidly diffusing coreactant, which increases the fractional surface coverage of the fast-diffusing coreactant and with it the growth rate. At sufficiently large depths, eventually the surface concentration of the more slowly diffusing coreactant will become rate limiting and the growth rate will begin to fall; to obtain superconformal growth, therefore, conditions must be chosen so that the growth rate does not surpass its peak value. As a specific example of how this new approach can be implemented, MgO is deposited at 220 °C using the aminodiboranate precursor Mg(DMADB)2 and H2O. Under properly chosen conditions, the growth rate increases from 1.0 nm/min at the trench opening to 1.8 nm/min at a depth/width ratio of 18. The authors propose a kinetic model that quantitatively explains these observations and, more generally, predicts the film profile as a function of the partial pressures of the coreactants in the gas feed, the molecular diffusivities, and the aspect ratio of the feature. An additional benefit of the model is that it can be used to predict conditions under which perfectly conformal CVD depositions will result. The present method should enable the fabrication of nanoscale devices in which high aspect ratio recessed features need to be completely filled. The method is intrinsic in nature and does not require special surface preparation, the use of a catalyst, or cycles of deposition and etching." @default.
- W1964608748 created "2016-06-24" @default.
- W1964608748 creator A5041813289 @default.
- W1964608748 creator A5041818298 @default.
- W1964608748 creator A5047058288 @default.
- W1964608748 creator A5054071220 @default.
- W1964608748 creator A5071024897 @default.
- W1964608748 date "2014-08-28" @default.
- W1964608748 modified "2023-10-18" @default.
- W1964608748 title "Superconformal chemical vapor deposition of thin films in deep features" @default.
- W1964608748 cites W1964608748 @default.
- W1964608748 cites W1972674194 @default.
- W1964608748 cites W1974140104 @default.
- W1964608748 cites W1978622662 @default.
- W1964608748 cites W1978710931 @default.
- W1964608748 cites W1982857787 @default.
- W1964608748 cites W1992568289 @default.
- W1964608748 cites W2008039559 @default.
- W1964608748 cites W2013779936 @default.
- W1964608748 cites W2017975908 @default.
- W1964608748 cites W2020772319 @default.
- W1964608748 cites W2022671707 @default.
- W1964608748 cites W2025230839 @default.
- W1964608748 cites W2028568811 @default.
- W1964608748 cites W2032531295 @default.
- W1964608748 cites W2035823078 @default.
- W1964608748 cites W2036605676 @default.
- W1964608748 cites W2039757262 @default.
- W1964608748 cites W2042001315 @default.
- W1964608748 cites W2042351148 @default.
- W1964608748 cites W2044957174 @default.
- W1964608748 cites W2050162673 @default.
- W1964608748 cites W2050697850 @default.
- W1964608748 cites W2057015487 @default.
- W1964608748 cites W2057158710 @default.
- W1964608748 cites W2066252471 @default.
- W1964608748 cites W2074821211 @default.
- W1964608748 cites W2085811348 @default.
- W1964608748 cites W2087042959 @default.
- W1964608748 cites W2088357735 @default.
- W1964608748 cites W2092414914 @default.
- W1964608748 cites W2100471439 @default.
- W1964608748 cites W2101214719 @default.
- W1964608748 cites W2111364287 @default.
- W1964608748 cites W2116949967 @default.
- W1964608748 cites W2120491593 @default.
- W1964608748 cites W2122040601 @default.
- W1964608748 cites W2136588753 @default.
- W1964608748 cites W2151017554 @default.
- W1964608748 cites W2162243567 @default.
- W1964608748 doi "https://doi.org/10.1116/1.4893930" @default.
- W1964608748 hasPublicationYear "2014" @default.
- W1964608748 type Work @default.
- W1964608748 sameAs 1964608748 @default.
- W1964608748 citedByCount "26" @default.
- W1964608748 countsByYear W19646087482014 @default.
- W1964608748 countsByYear W19646087482015 @default.
- W1964608748 countsByYear W19646087482016 @default.
- W1964608748 countsByYear W19646087482017 @default.
- W1964608748 countsByYear W19646087482018 @default.
- W1964608748 countsByYear W19646087482019 @default.
- W1964608748 countsByYear W19646087482020 @default.
- W1964608748 countsByYear W19646087482021 @default.
- W1964608748 countsByYear W19646087482022 @default.
- W1964608748 crossrefType "journal-article" @default.
- W1964608748 hasAuthorship W1964608748A5041813289 @default.
- W1964608748 hasAuthorship W1964608748A5041818298 @default.
- W1964608748 hasAuthorship W1964608748A5047058288 @default.
- W1964608748 hasAuthorship W1964608748A5054071220 @default.
- W1964608748 hasAuthorship W1964608748A5071024897 @default.
- W1964608748 hasConcept C127313418 @default.
- W1964608748 hasConcept C127413603 @default.
- W1964608748 hasConcept C151730666 @default.
- W1964608748 hasConcept C171250308 @default.
- W1964608748 hasConcept C185592680 @default.
- W1964608748 hasConcept C188198153 @default.
- W1964608748 hasConcept C192562407 @default.
- W1964608748 hasConcept C2524010 @default.
- W1964608748 hasConcept C2778312390 @default.
- W1964608748 hasConcept C2816523 @default.
- W1964608748 hasConcept C33923547 @default.
- W1964608748 hasConcept C57410435 @default.
- W1964608748 hasConcept C64297162 @default.
- W1964608748 hasConcept C78519656 @default.
- W1964608748 hasConceptScore W1964608748C127313418 @default.
- W1964608748 hasConceptScore W1964608748C127413603 @default.
- W1964608748 hasConceptScore W1964608748C151730666 @default.
- W1964608748 hasConceptScore W1964608748C171250308 @default.
- W1964608748 hasConceptScore W1964608748C185592680 @default.
- W1964608748 hasConceptScore W1964608748C188198153 @default.
- W1964608748 hasConceptScore W1964608748C192562407 @default.
- W1964608748 hasConceptScore W1964608748C2524010 @default.
- W1964608748 hasConceptScore W1964608748C2778312390 @default.
- W1964608748 hasConceptScore W1964608748C2816523 @default.
- W1964608748 hasConceptScore W1964608748C33923547 @default.
- W1964608748 hasConceptScore W1964608748C57410435 @default.
- W1964608748 hasConceptScore W1964608748C64297162 @default.
- W1964608748 hasConceptScore W1964608748C78519656 @default.
- W1964608748 hasIssue "5" @default.
- W1964608748 hasLocation W19646087481 @default.