Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964645175> ?p ?o ?g. }
- W1964645175 endingPage "389" @default.
- W1964645175 startingPage "380" @default.
- W1964645175 abstract "Photoreceptor degeneration in human photoreceptor dystrophies and in the relevant animal models has been thought to be executed by one common mechanism – caspase-mediated apoptosis . However, recent experiments have challenged this concept. In previous experiments, analyzing gene expression in the degenerating rd/rd mouse retina, we have suggested that the gene defect leads to oxidative stress and altered metabolism, which may induce caspase-dependent and caspase-independent cell death mechanisms such as the activation of cystein-proteases, lysosomal proteases , autophagy and complement-mediated lysis. In this study we asked two questions. First, whether a temporal analysis of these different mechanisms during the course of degeneration would enable us to establish a causal relationship between these events; and second, whether photoreceptor degeneration in different models of photoreceptor dystrophies occurs by activating the same mechanisms. Three models of photoreceptor degeneration were chosen in which photoreceptor degeneration is caused by different events: the rd/rd mouse (calcium overload); the rds/rds mouse (structural defect); and light-damage (LD; oxidative stress). Marker genes were selected for the identified processes. PCR-analysis on laser capture microdissection samples was used to verify the expression of these genes in the rod photoreceptor layer. A temporal relationship between the processes was established at the mRNA level, using quantitative RT-PCR. The time course of gene expression was compared to that of cell loss (loss of rows of photoreceptor nuclei) and apoptosis (TUNEL labeling). Apoptosis and autophagy was analyzed using enzymatic assays . The time course of apoptosis and TUNEL labeling coincide in all three models. Complement-activated lysis was found to either parallel ( rd/rd and rds/rds ) or precede (LD) the development of TUNEL-positive cells. Autophagy was determined to parallel ( rd/rd and LD) or lag ( rds/rds ) behind the development of TUNEL-positive cells. In all three models, glucose metabolism was found to be increased significantly prior to the onset of cell death, but then dropped in parallel with the loss of cells. The presence of the marker genes was verified by laser capture microdissection, and apoptosis (caspase activity) and autophagy (lysozyme and cathepsin activity) were verified in retina extracts. These results provide evidence that irrespective of whether photoreceptor degeneration is triggered by gene defects (lack of β-PDE or rds/peripherin) or environmental stress (light-damage), a number of pro-apoptotic mechanisms are triggered leading to the degeneration of the photoreceptor cells. The temporal pattern of the different pathways suggests that the non-caspase-dependent mechanisms may actively participate in the demise of the photoreceptors, rather than represent a passive response of the retina to the presence of dying cells. Thus, unless the common upstream initiator for a given photoreceptor dystrophy is found, multiple rescue paradigms need to be used to target all active pathways." @default.
- W1964645175 created "2016-06-24" @default.
- W1964645175 creator A5032710584 @default.
- W1964645175 creator A5036512294 @default.
- W1964645175 creator A5055321629 @default.
- W1964645175 creator A5091875494 @default.
- W1964645175 date "2006-08-01" @default.
- W1964645175 modified "2023-10-16" @default.
- W1964645175 title "Multiple, parallel cellular suicide mechanisms participate in photoreceptor cell death" @default.
- W1964645175 cites W1500106790 @default.
- W1964645175 cites W1508143080 @default.
- W1964645175 cites W1544063520 @default.
- W1964645175 cites W1557686543 @default.
- W1964645175 cites W1607777232 @default.
- W1964645175 cites W1790201143 @default.
- W1964645175 cites W1964836954 @default.
- W1964645175 cites W1966761605 @default.
- W1964645175 cites W1977361305 @default.
- W1964645175 cites W1978603421 @default.
- W1964645175 cites W1979832829 @default.
- W1964645175 cites W1981636985 @default.
- W1964645175 cites W1988232847 @default.
- W1964645175 cites W1991464867 @default.
- W1964645175 cites W1996813579 @default.
- W1964645175 cites W2007689766 @default.
- W1964645175 cites W2011767660 @default.
- W1964645175 cites W2013851841 @default.
- W1964645175 cites W2024486785 @default.
- W1964645175 cites W2025471485 @default.
- W1964645175 cites W2028041970 @default.
- W1964645175 cites W2028803712 @default.
- W1964645175 cites W2038520499 @default.
- W1964645175 cites W2038990610 @default.
- W1964645175 cites W2042465195 @default.
- W1964645175 cites W2045805322 @default.
- W1964645175 cites W2049110705 @default.
- W1964645175 cites W2050453067 @default.
- W1964645175 cites W2064088958 @default.
- W1964645175 cites W2067086178 @default.
- W1964645175 cites W2067263928 @default.
- W1964645175 cites W2067692987 @default.
- W1964645175 cites W2074584047 @default.
- W1964645175 cites W2074668040 @default.
- W1964645175 cites W2075177078 @default.
- W1964645175 cites W2088449181 @default.
- W1964645175 cites W2088909888 @default.
- W1964645175 cites W2097294190 @default.
- W1964645175 cites W2104678075 @default.
- W1964645175 cites W2108086395 @default.
- W1964645175 cites W2113784410 @default.
- W1964645175 cites W2116050939 @default.
- W1964645175 cites W2116784956 @default.
- W1964645175 cites W2117386992 @default.
- W1964645175 cites W2121750285 @default.
- W1964645175 cites W2122268695 @default.
- W1964645175 cites W2130609366 @default.
- W1964645175 cites W2134388096 @default.
- W1964645175 cites W2135300477 @default.
- W1964645175 cites W2138952087 @default.
- W1964645175 cites W2142189837 @default.
- W1964645175 cites W2155236757 @default.
- W1964645175 cites W2155808288 @default.
- W1964645175 cites W3145351529 @default.
- W1964645175 cites W4239740613 @default.
- W1964645175 doi "https://doi.org/10.1016/j.exer.2006.01.014" @default.
- W1964645175 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/16626700" @default.
- W1964645175 hasPublicationYear "2006" @default.
- W1964645175 type Work @default.
- W1964645175 sameAs 1964645175 @default.
- W1964645175 citedByCount "138" @default.
- W1964645175 countsByYear W19646451752012 @default.
- W1964645175 countsByYear W19646451752013 @default.
- W1964645175 countsByYear W19646451752014 @default.
- W1964645175 countsByYear W19646451752015 @default.
- W1964645175 countsByYear W19646451752016 @default.
- W1964645175 countsByYear W19646451752017 @default.
- W1964645175 countsByYear W19646451752018 @default.
- W1964645175 countsByYear W19646451752019 @default.
- W1964645175 countsByYear W19646451752020 @default.
- W1964645175 countsByYear W19646451752021 @default.
- W1964645175 countsByYear W19646451752022 @default.
- W1964645175 countsByYear W19646451752023 @default.
- W1964645175 crossrefType "journal-article" @default.
- W1964645175 hasAuthorship W1964645175A5032710584 @default.
- W1964645175 hasAuthorship W1964645175A5036512294 @default.
- W1964645175 hasAuthorship W1964645175A5055321629 @default.
- W1964645175 hasAuthorship W1964645175A5091875494 @default.
- W1964645175 hasConcept C104317684 @default.
- W1964645175 hasConcept C125965507 @default.
- W1964645175 hasConcept C142724271 @default.
- W1964645175 hasConcept C150194340 @default.
- W1964645175 hasConcept C169760540 @default.
- W1964645175 hasConcept C181199279 @default.
- W1964645175 hasConcept C182220744 @default.
- W1964645175 hasConcept C190283241 @default.
- W1964645175 hasConcept C196795494 @default.
- W1964645175 hasConcept C2777093970 @default.
- W1964645175 hasConcept C2779354088 @default.