Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964745175> ?p ?o ?g. }
- W1964745175 endingPage "1163" @default.
- W1964745175 startingPage "1146" @default.
- W1964745175 abstract "Chemical reactions of ground-state species strongly govern the formation of excited-state species, including OH* and CH*, which are commonly used to determine ignition delay times of fuels. With well-characterized chemiluminescence rates embedded in chemical kinetics mechanisms, time histories of excited-state species can aid in identifying influential ground-state reactions which are important to processes such as ignition delay time. Placing emphasis on the high-temperature regime, improvements were made to a detailed chemical kinetics mechanism of n-nonane oxidation developed previously by the authors. Using characteristic features of OH* time histories measured in shock-tube experiments as a metric, detailed model analyses were performed over a broad range of conditions: T > 1100 K, 1.5 < P (atm) < 10.5, ϕ = 0.5, 1.0, 2.0. OH* time history measurements, particularly under fuel-rich conditions (ϕ = 2.0), displayed a two-peak behavior, with the first peak occurring within the first 5–10 μs after reflected-shock passage, and the second, wider peak corresponding to main oxidation and ignition. In the initial version of the kinetics mechanism, the two peaks at rich conditions were predicted to merge, blurring the main ignition process prior to the second peak. The work herein presents modifications to the initial chemical kinetics mechanism which led to improved agreement between measurements and model-based predictions, with emphasis on the fuel-rich condition. To this end, the predicted shapes of the OH* time histories were crucial to matching the two-peak behavior detected in the experiments. A first-order resistance–capacitance (RC) model of the experimental time response of the optical setup was developed and shown to reproduce the measured time dependence and peak behavior that are vital for matching the OH* behavior near time-zero. The RC model processes the kinetics predictions in a way that allows the kinetics model predictions to directly correspond to the true conditions in the experiment. In moving towards improved agreement in OH*-profile predictions for all conditions, improvements in the kinetics mechanism were also realized at the two leaner equivalence ratios (ϕ = 1.0 and 0.5), both in terms of OH* profile shape and ignition delay times. Model calculations of oxidation processes indicate that reactions leading to the first OH* peak originate from fuel homolysis. The resulting (alkyl) radicals lead to the formation of methyl which then, through a series of H-abstraction reactions, leads to the production of the methylidyne radical (CH) that reacts with molecular oxygen to form OH*. The oxidation processes near time-zero terminate, in part, due to methyl depletion by methylene forming C2H4 + H2. In addition to the insight gained on n-nonane ignition and oxidation chemistry, the present study highlights the utility of correctly interpreted OH* measurements for inference of kinetic information other than ignition delay times." @default.
- W1964745175 created "2016-06-24" @default.
- W1964745175 creator A5059637559 @default.
- W1964745175 creator A5071330264 @default.
- W1964745175 creator A5075501475 @default.
- W1964745175 date "2014-05-01" @default.
- W1964745175 modified "2023-10-14" @default.
- W1964745175 title "Chemical kinetics modeling of n-nonane oxidation in oxygen/argon using excited-state species time histories" @default.
- W1964745175 cites W1498579142 @default.
- W1964745175 cites W1964375458 @default.
- W1964745175 cites W1966484376 @default.
- W1964745175 cites W1967898654 @default.
- W1964745175 cites W1976123559 @default.
- W1964745175 cites W1978691293 @default.
- W1964745175 cites W1981074098 @default.
- W1964745175 cites W1981081480 @default.
- W1964745175 cites W1984812991 @default.
- W1964745175 cites W1994990330 @default.
- W1964745175 cites W2000812896 @default.
- W1964745175 cites W2002776218 @default.
- W1964745175 cites W2006855907 @default.
- W1964745175 cites W2008881653 @default.
- W1964745175 cites W2023158729 @default.
- W1964745175 cites W2029101044 @default.
- W1964745175 cites W2030125367 @default.
- W1964745175 cites W2034860155 @default.
- W1964745175 cites W2041702716 @default.
- W1964745175 cites W2042507838 @default.
- W1964745175 cites W2046909164 @default.
- W1964745175 cites W2048101253 @default.
- W1964745175 cites W2048998010 @default.
- W1964745175 cites W2051248324 @default.
- W1964745175 cites W2051389444 @default.
- W1964745175 cites W2051749998 @default.
- W1964745175 cites W2052133311 @default.
- W1964745175 cites W2052545187 @default.
- W1964745175 cites W2056417840 @default.
- W1964745175 cites W2057481734 @default.
- W1964745175 cites W2065621903 @default.
- W1964745175 cites W2067809794 @default.
- W1964745175 cites W2070732991 @default.
- W1964745175 cites W2075596910 @default.
- W1964745175 cites W2076223238 @default.
- W1964745175 cites W2115636628 @default.
- W1964745175 cites W2125035285 @default.
- W1964745175 cites W2156652305 @default.
- W1964745175 cites W2312786953 @default.
- W1964745175 cites W240825418 @default.
- W1964745175 cites W2464314123 @default.
- W1964745175 cites W3166753884 @default.
- W1964745175 cites W4231692096 @default.
- W1964745175 doi "https://doi.org/10.1016/j.combustflame.2013.11.008" @default.
- W1964745175 hasPublicationYear "2014" @default.
- W1964745175 type Work @default.
- W1964745175 sameAs 1964745175 @default.
- W1964745175 citedByCount "5" @default.
- W1964745175 countsByYear W19647451752014 @default.
- W1964745175 countsByYear W19647451752016 @default.
- W1964745175 countsByYear W19647451752017 @default.
- W1964745175 countsByYear W19647451752021 @default.
- W1964745175 crossrefType "journal-article" @default.
- W1964745175 hasAuthorship W1964745175A5059637559 @default.
- W1964745175 hasAuthorship W1964745175A5071330264 @default.
- W1964745175 hasAuthorship W1964745175A5075501475 @default.
- W1964745175 hasConcept C105923489 @default.
- W1964745175 hasConcept C113196181 @default.
- W1964745175 hasConcept C121332964 @default.
- W1964745175 hasConcept C122881758 @default.
- W1964745175 hasConcept C147789679 @default.
- W1964745175 hasConcept C148898269 @default.
- W1964745175 hasConcept C159063594 @default.
- W1964745175 hasConcept C177801218 @default.
- W1964745175 hasConcept C178790620 @default.
- W1964745175 hasConcept C181500209 @default.
- W1964745175 hasConcept C184779094 @default.
- W1964745175 hasConcept C185592680 @default.
- W1964745175 hasConcept C36663273 @default.
- W1964745175 hasConcept C43617362 @default.
- W1964745175 hasConcept C540031477 @default.
- W1964745175 hasConcept C55493867 @default.
- W1964745175 hasConcept C62520636 @default.
- W1964745175 hasConcept C70477161 @default.
- W1964745175 hasConcept C97355855 @default.
- W1964745175 hasConceptScore W1964745175C105923489 @default.
- W1964745175 hasConceptScore W1964745175C113196181 @default.
- W1964745175 hasConceptScore W1964745175C121332964 @default.
- W1964745175 hasConceptScore W1964745175C122881758 @default.
- W1964745175 hasConceptScore W1964745175C147789679 @default.
- W1964745175 hasConceptScore W1964745175C148898269 @default.
- W1964745175 hasConceptScore W1964745175C159063594 @default.
- W1964745175 hasConceptScore W1964745175C177801218 @default.
- W1964745175 hasConceptScore W1964745175C178790620 @default.
- W1964745175 hasConceptScore W1964745175C181500209 @default.
- W1964745175 hasConceptScore W1964745175C184779094 @default.
- W1964745175 hasConceptScore W1964745175C185592680 @default.
- W1964745175 hasConceptScore W1964745175C36663273 @default.
- W1964745175 hasConceptScore W1964745175C43617362 @default.
- W1964745175 hasConceptScore W1964745175C540031477 @default.