Matches in SemOpenAlex for { <https://semopenalex.org/work/W1964901833> ?p ?o ?g. }
- W1964901833 endingPage "1550" @default.
- W1964901833 startingPage "1542" @default.
- W1964901833 abstract "Rationale and Objectives The objective of this study is to investigate the feasibility of predicting near-term risk of breast cancer development in women after a negative mammography screening examination. It is based on a statistical learning model that combines computerized image features related to bilateral mammographic tissue asymmetry and other clinical factors. Materials and Methods A database of negative digital mammograms acquired from 994 women was retrospectively collected. In the next sequential screening examination (12 to 36 months later), 283 women were diagnosed positive for cancer, 349 were recalled for additional diagnostic workups and later proved to be benign, and 362 remain negative (not recalled). From an initial pool of 183 features, we applied a Sequential Forward Floating Selection feature selection method to search for effective features. Using 10 selected features, we developed and trained a support vector machine classification model to compute a cancer risk or probability score for each case. The area under the receiver operating characteristic curve and odds ratios (ORs) were used as the two performance assessment indices. Results The area under the receiver operating characteristic curve = 0.725 ± 0.018 was obtained for positive and negative/benign case classification. The ORs showed an increasing risk trend with increasing model-generated risk scores (from 1.00 to 12.34, between positive and negative/benign case groups). Regression analysis of ORs also indicated a significant increase trend in slope (P = .006). Conclusions This study demonstrates that the risk scores computed by a new support vector machine model involving bilateral mammographic feature asymmetry have potential to assist the prediction of near-term risk of women for developing breast cancer. The objective of this study is to investigate the feasibility of predicting near-term risk of breast cancer development in women after a negative mammography screening examination. It is based on a statistical learning model that combines computerized image features related to bilateral mammographic tissue asymmetry and other clinical factors. A database of negative digital mammograms acquired from 994 women was retrospectively collected. In the next sequential screening examination (12 to 36 months later), 283 women were diagnosed positive for cancer, 349 were recalled for additional diagnostic workups and later proved to be benign, and 362 remain negative (not recalled). From an initial pool of 183 features, we applied a Sequential Forward Floating Selection feature selection method to search for effective features. Using 10 selected features, we developed and trained a support vector machine classification model to compute a cancer risk or probability score for each case. The area under the receiver operating characteristic curve and odds ratios (ORs) were used as the two performance assessment indices. The area under the receiver operating characteristic curve = 0.725 ± 0.018 was obtained for positive and negative/benign case classification. The ORs showed an increasing risk trend with increasing model-generated risk scores (from 1.00 to 12.34, between positive and negative/benign case groups). Regression analysis of ORs also indicated a significant increase trend in slope (P = .006). This study demonstrates that the risk scores computed by a new support vector machine model involving bilateral mammographic feature asymmetry have potential to assist the prediction of near-term risk of women for developing breast cancer." @default.
- W1964901833 created "2016-06-24" @default.
- W1964901833 creator A5019989059 @default.
- W1964901833 creator A5045998635 @default.
- W1964901833 creator A5071542775 @default.
- W1964901833 creator A5076868240 @default.
- W1964901833 date "2013-12-01" @default.
- W1964901833 modified "2023-10-03" @default.
- W1964901833 title "Prediction of Near-term Breast Cancer Risk Based on Bilateral Mammographic Feature Asymmetry" @default.
- W1964901833 cites W1492054812 @default.
- W1964901833 cites W1544628017 @default.
- W1964901833 cites W1546175822 @default.
- W1964901833 cites W1860760959 @default.
- W1964901833 cites W1915797614 @default.
- W1964901833 cites W1989467684 @default.
- W1964901833 cites W1991064064 @default.
- W1964901833 cites W2000530780 @default.
- W1964901833 cites W2013755458 @default.
- W1964901833 cites W2013840898 @default.
- W1964901833 cites W2013959342 @default.
- W1964901833 cites W2014379348 @default.
- W1964901833 cites W2014915963 @default.
- W1964901833 cites W2021103853 @default.
- W1964901833 cites W2023047363 @default.
- W1964901833 cites W2023354251 @default.
- W1964901833 cites W2034878396 @default.
- W1964901833 cites W2048988218 @default.
- W1964901833 cites W2050515823 @default.
- W1964901833 cites W2052828511 @default.
- W1964901833 cites W2064473418 @default.
- W1964901833 cites W2065564800 @default.
- W1964901833 cites W2066982721 @default.
- W1964901833 cites W2072794239 @default.
- W1964901833 cites W2074020279 @default.
- W1964901833 cites W2074996049 @default.
- W1964901833 cites W2078318564 @default.
- W1964901833 cites W2089121733 @default.
- W1964901833 cites W2095697356 @default.
- W1964901833 cites W2101847285 @default.
- W1964901833 cites W2111198437 @default.
- W1964901833 cites W2119910794 @default.
- W1964901833 cites W2129017343 @default.
- W1964901833 cites W2129607917 @default.
- W1964901833 cites W2130308202 @default.
- W1964901833 cites W2131062842 @default.
- W1964901833 cites W2140432463 @default.
- W1964901833 cites W2143405692 @default.
- W1964901833 cites W2143858998 @default.
- W1964901833 cites W2144854846 @default.
- W1964901833 cites W2150307384 @default.
- W1964901833 cites W2152992560 @default.
- W1964901833 cites W2153635508 @default.
- W1964901833 cites W2161817637 @default.
- W1964901833 cites W2162207052 @default.
- W1964901833 cites W2163842499 @default.
- W1964901833 cites W2163905093 @default.
- W1964901833 cites W2170322051 @default.
- W1964901833 cites W2915512755 @default.
- W1964901833 doi "https://doi.org/10.1016/j.acra.2013.08.020" @default.
- W1964901833 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3856115" @default.
- W1964901833 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24200481" @default.
- W1964901833 hasPublicationYear "2013" @default.
- W1964901833 type Work @default.
- W1964901833 sameAs 1964901833 @default.
- W1964901833 citedByCount "49" @default.
- W1964901833 countsByYear W19649018332014 @default.
- W1964901833 countsByYear W19649018332015 @default.
- W1964901833 countsByYear W19649018332016 @default.
- W1964901833 countsByYear W19649018332017 @default.
- W1964901833 countsByYear W19649018332018 @default.
- W1964901833 countsByYear W19649018332019 @default.
- W1964901833 countsByYear W19649018332020 @default.
- W1964901833 countsByYear W19649018332021 @default.
- W1964901833 countsByYear W19649018332022 @default.
- W1964901833 countsByYear W19649018332023 @default.
- W1964901833 crossrefType "journal-article" @default.
- W1964901833 hasAuthorship W1964901833A5019989059 @default.
- W1964901833 hasAuthorship W1964901833A5045998635 @default.
- W1964901833 hasAuthorship W1964901833A5071542775 @default.
- W1964901833 hasAuthorship W1964901833A5076868240 @default.
- W1964901833 hasBestOaLocation W19649018332 @default.
- W1964901833 hasConcept C105795698 @default.
- W1964901833 hasConcept C121608353 @default.
- W1964901833 hasConcept C12267149 @default.
- W1964901833 hasConcept C126322002 @default.
- W1964901833 hasConcept C126838900 @default.
- W1964901833 hasConcept C138885662 @default.
- W1964901833 hasConcept C148483581 @default.
- W1964901833 hasConcept C151956035 @default.
- W1964901833 hasConcept C154945302 @default.
- W1964901833 hasConcept C156957248 @default.
- W1964901833 hasConcept C2776401178 @default.
- W1964901833 hasConcept C2779098232 @default.
- W1964901833 hasConcept C2780472235 @default.
- W1964901833 hasConcept C29456083 @default.
- W1964901833 hasConcept C33923547 @default.
- W1964901833 hasConcept C41008148 @default.
- W1964901833 hasConcept C41895202 @default.